The automated quantification of the behaviour of freely moving animals is increasingly needed in applied ethology. State-of-the-art approaches often require tags to identify animals, high computational power for data collection and processing, and are sensitive to environmental conditions, which limits their large-scale utilization, for instance in genetic selection programs of animal breeding. Here we introduce a new automated tracking system based on millimetre-wave radars for real time robust and high precision monitoring of untagged animals. In contrast to conventional video tracking systems, radar tracking requires low processing power, is independent on light variations and has more accurate estimations of animal positions due to a lower misdetection rate. To validate our approach, we monitored the movements of 58 sheep in a standard indoor behavioural test used for assessing social motivation. We derived new estimators from the radar data that can be used to improve the behavioural phenotyping of the sheep. We then showed how radars can be used for movement tracking at larger spatial scales, in the field, by adjusting operating frequency and radiated electromagnetic power. Millimetre-wave radars thus hold considerable promises precision farming through high-throughput recording of the behaviour of untagged animals in different types of environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662461PMC
http://dx.doi.org/10.3390/s21238140DOI Listing

Publication Analysis

Top Keywords

millimetre-wave radars
8
untagged animals
8
tracking
5
non-invasive millimetre-wave
4
millimetre-wave radar
4
radar sensor
4
sensor automated
4
automated behavioural
4
behavioural tracking
4
tracking precision
4

Similar Publications

Vital signs such as heart rate (HR) and respiration rate (RR) are essential physiological parameters that are routinely used to monitor human health and bodily functions. They can be continuously monitored through contact or contactless measurements performed in the home or a hospital. In this study, a contactless Doppler radar W-band sensing system was used for short-range, contactless vital sign estimation.

View Article and Find Full Text PDF

Precise Mechanical Oscillator Design and Calibration for Characterising Sub-Millimetre Movements in mmWave Radar Systems.

Sensors (Basel)

November 2024

Sensory Systems Research Group (GISS), Department of Electrical Engineering, Electronics and Automation, Universidad de Extremadura, 06006 Badajoz, Spain.

For many industrial and medical applications, measuring sub-millimetre movements has become crucial, for instance, for the precise guidance of surgical robots. The literature shows the feasibility of millimetre-wave (mmWave) radars to deal with such micro-vibrations. However, the availability of reference devices to configure and test these systems is very limited.

View Article and Find Full Text PDF

Breathing is one of the body's most basic functions and abnormal breathing can indicate underlying cardiopulmonary problems. Monitoring respiratory abnormalities can help with early detection and reduce the risk of cardiopulmonary diseases. In this study, a 77 GHz frequency-modulated continuous wave (FMCW) millimetre-wave (mmWave) radar was used to detect different types of respiratory signals from the human body in a non-contact manner for respiratory monitoring (RM).

View Article and Find Full Text PDF

Human posture recognition technology is widely used in the fields of healthcare, human-computer interaction, and sports. The use of a Frequency-Modulated Continuous Wave (FMCW) millimetre-wave (MMW) radar sensor in measuring human posture characteristics data is of great significance because of its robust and strong recognition capabilities. This paper demonstrates how human posture characteristics data are measured, classified, and identified using FMCW techniques.

View Article and Find Full Text PDF

Advances, Challenges, and Future Perspectives of Microwave Reflectometry for Plasma Position and Shape Control on Future Nuclear Fusion Devices.

Sensors (Basel)

April 2023

ENEA, Fusion and Technologies for Nuclear Safety Department, C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Italy.

Providing energy from fusion and finding ways to scale up the fusion process to commercial proportions in an efficient, economical, and environmentally benign way is one of the grand challenges for engineering. Controlling the burning plasma in real-time is one of the critical issues that need to be addressed. Plasma Position Reflectometry (PPR) is expected to have an important role in next-generation fusion machines, such as DEMO, as a diagnostic to monitor the position and shape of the plasma continuously, complementing magnetic diagnostics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!