This paper proposes a method for optimizing and designing a wireless power transfer system operating at 13.56 MHz. It can be used as guidelines for designing coils for the new-trending technology that enables NFC devices to not only to communicate but also to charge. Since NFC wireless charging is an emerging technology, it is of interest to propose optimizations and a dedicated circuit design for such systems. This work proposes an optimization procedure to calculate the dimensions of a transmitter and receiver pair that assures the highest efficiency while considering all possible positions of a receiver that is placed on a desired surface. This procedure seeks to facilitate and automate the design of rectangular-shaped coils, whereas the literature proposes mainly square-shaped coils. Afterwards, a circuit analysis was conducted, and the series-parallel compensation network is proposed as the most promising topology of the receiver to assure a low efficiency sensibility to load variations for 13.56 MHz wireless power transfer systems. A pair of optimized transmitter and receiver coils is prototyped, and the experimental results are tested against the theory. The transmitter of 7 cm×11.4 cm and receiver of 4 cm ×4 cm are separated by 10 mm. The receiver can move on a surface of 8 cm ×12 cm and the load can vary from 36 Ω to 300 Ω while assuring a minimum and maximum efficiency of 80% and 88.3%, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659795 | PMC |
http://dx.doi.org/10.3390/s21238074 | DOI Listing |
Front Neurosci
January 2025
Department of Mathematics, University of Antwerp-Interuniversity Microelectronics Centre (imec), Antwerp, Belgium.
Introduction: The study of attention has been pivotal in advancing our comprehension of cognition. The goal of this study is to investigate which EEG data representations or features are most closely linked to attention, and to what extent they can handle the cross-subject variability.
Methods: We explore the features obtained from the univariate time series from a single EEG channel, such as time domain features and recurrence plots, as well as representations obtained directly from the multivariate time series, such as global field power or functional brain networks.
Rev Cardiovasc Med
January 2025
Center for Preclinical Surgical & Interventional Research, The Texas Heart Institute, Houston, TX 77030, USA.
The evolution of left ventricular assist devices (LVADs) from large, pulsatile systems to compact, continuous-flow pumps has significantly improved implantation outcomes and patient mobility. Minimally invasive surgical techniques have emerged that offer reduced morbidity and enhanced recovery for LVAD recipients. Innovations in wireless power transfer technologies aim to mitigate driveline-related complications, enhancing patient safety and quality of life.
View Article and Find Full Text PDFCoal mining industry is one of the main source for economy of every nations, whereas safety in the underground coal mining area is still doubtful. According to some reports, there is heavy loss of life and money due to the occasional accidents in the coal mining area. Some existing researchers has been addressed this issue and approached their method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China.
Wirelessly driven flexible actuators are crucial to the development of flexible robotic crawling. However, great challenges still remain for the crawling of flexible actuators in complex environments. Herein, we reported a wireless flexible actuator synergistically driven by wireless power transmission (WPT) technology and near-infrared (NIR) light, which consists of a poly(dimethylsiloxane)-graphene oxide (PDMS-GO) composite layer, eutectic gallium-indium alloy (EGaIn), a PDMS layer, and a polyimide (PI) layer.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Information and Communication Technology, University Tunku Abdul Rahman (UTAR), Kampar 31900, Perak, Malaysia.
This research presents an innovative polarization-insensitive metasurface (MS) harvester designed for energy harvesting applications at 5 GHz, capable of operating efficiently over wide reception angles. The proposed MS features a novel wheel-shaped resonator array whose symmetrical structure ensures insensitivity to the polarization of incident electromagnetic (EM) waves, enabling efficient energy absorption and minimizing reflections. Unlike conventional designs, the metasurface achieves near-unity harvesting efficiency, exceeds 94% under normal incidence, and maintains superior performance across various incident angles for TE and TM polarizations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!