Design of Ultrasonic Synthetic Aperture Imaging Systems Based on a Non-Grid 2D Sparse Array.

Sensors (Basel)

Instituto de Tecnologías Físicas y de la Información (ITEFI-CSIC), C/Serrano 144, 28006 Madrid, Spain.

Published: November 2021

This work provides a guide to design ultrasonic synthetic aperture systems for non-grid two-dimensional sparse arrays such as spirals or annular segmented arrays. It presents an algorithm that identifies which elements have a more significant impact on the beampattern characteristics and uses this information to reduce the number of signals, the number of emitters and the number of parallel receiver channels involved in the beamforming process. Consequently, we can optimise the 3D synthetic aperture ultrasonic imaging system for a specific sparse array, reducing the computational cost, the hardware requirements and the system complexity. Simulations using a Fermat spiral array and experimental data based on an annular segmented array with 64 elements are used to assess this algorithm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659915PMC
http://dx.doi.org/10.3390/s21238001DOI Listing

Publication Analysis

Top Keywords

synthetic aperture
12
design ultrasonic
8
ultrasonic synthetic
8
sparse array
8
annular segmented
8
aperture imaging
4
imaging systems
4
systems based
4
based non-grid
4
non-grid sparse
4

Similar Publications

Bridge expansion joints are critical components that accommodate the movement of a bridge caused by temperature fluctuations, concrete shrinkage, and vehicular loads. Analyzing the spatiotemporal deformation of these expansion joints is essential for monitoring bridge safety. This study investigates the deformation characteristics of Hongtang Bridge in Fuzhou, China, using synthetic aperture radar interferometry (InSAR).

View Article and Find Full Text PDF

The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the complex local topography. In this study, we present the first observations of the surface dynamics of DGBL by integrating satellite- and ground-based InSAR data complemented by kinematic interpretation using a LiDAR-derived Digital Surface Model (DSM).

View Article and Find Full Text PDF

A Combined CNN-LSTM Network for Ship Classification on SAR Images.

Sensors (Basel)

December 2024

ENSTA Bretagne, Lab-STICC, UMR CNRS 6285, 29806 Brest, France.

Satellite SAR (synthetic aperture radar) imagery offers global coverage and all-weather recording capabilities, making it valuable for applications like remote sensing and maritime surveillance. However, its use in machine learning-based automatic target classification faces challenges, including the limited availability of SAR target training samples and the inherent constraints of SAR images, which provide less detailed features compared to natural images. These issues hinder the effective training of convolutional neural networks (CNNs) and complicate the transfer learning process due to the distinct imaging mechanisms of SAR and natural images.

View Article and Find Full Text PDF

Integrated Modeling and Target Classification Based on mmWave SAR and CNN Approach.

Sensors (Basel)

December 2024

Wireless Sensing and Imaging Laboratory & 6G Research Laboratory, SRM University AP, Amaravati 522502, India.

This study presents a numerical modeling approach that utilizes millimeter-wave (mm-Wave) Frequency-Modulated Continuous-Wave (FMCW) radar to reconstruct and classify five weapon types: grenades, knives, guns, iron rods, and wrenches. A dataset of 1000 images of these weapons was collected from various online sources and subsequently used to generate 3605 samples in the MATLAB (R2022b) environment for creating reflectivity-added images. Background reflectivity was considered to range from 0 to 0.

View Article and Find Full Text PDF

Study on a Strategy to Improve the Image Quality and Imaging Depth for Novel Synthetic Aperture Schemes: An Experimental Investigation.

Ultrason Imaging

January 2025

Biomedical Ultrasound Imaging Laboratory, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology, Madras, Chennai, India.

Imaging depth remains a restriction for Synthetic Aperture (SA) approaches, even though SA techniques have been shown to overcome some of the drawbacks of Conventional Focused Beamforming (CFB) technique. This limitation is attributed to lesser energy per transmit in SA techniques compared to that of CFB technique. Therefore, in this paper, a systematic investigation is done to evaluate the improvement in imaging depth and image quality of B-mode ultrasound images in the case of SA technique using PZT transducer by boosting the input voltage to the transducer, while measuring the acoustic exposure parameters recommended in international standards.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!