Three-dimensional reconstruction plays a vital role in assisting doctors and surgeons in diagnosing the healing progress of bone defects. Common three-dimensional reconstruction methods include surface and volume rendering. As the focus is on the shape of the bone, this study omits the volume rendering methods. Many improvements have been made to surface rendering methods like Marching Cubes and Marching Tetrahedra, but not many on working towards real-time or near real-time surface rendering for large medical images and studying the effects of different parameter settings for the improvements. Hence, this study attempts near real-time surface rendering for large medical images. Different parameter values are experimented on to study their effect on reconstruction accuracy, reconstruction and rendering time, and the number of vertices and faces. The proposed improvement involving three-dimensional data smoothing with convolution kernel Gaussian size 5 and mesh simplification reduction factor of 0.1 is the best parameter value combination for achieving a good balance between high reconstruction accuracy, low total execution time, and a low number of vertices and faces. It has successfully increased reconstruction accuracy by 0.0235%, decreased the total execution time by 69.81%, and decreased the number of vertices and faces by 86.57% and 86.61%, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659505PMC
http://dx.doi.org/10.3390/s21237955DOI Listing

Publication Analysis

Top Keywords

medical images
12
surface rendering
12
reconstruction accuracy
12
number vertices
12
vertices faces
12
effects parameter
8
parameter settings
8
data smoothing
8
mesh simplification
8
three-dimensional reconstruction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!