Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nasopharyngeal Carcinoma segmentation in magnetic resonance imagery (MRI) is vital to radiotherapy. Exact dose delivery hinges on an accurate delineation of the gross tumor volume (GTV). However, the large-scale variation in tumor volume is intractable, and the performance of current models is mostly unsatisfactory with indistinguishable and blurred boundaries of segmentation results of tiny tumor volume. To address the problem, we propose a densely connected deep convolutional network consisting of an encoder network and a corresponding decoder network, which extracts high-level semantic features from different levels and uses low-level spatial features concurrently to obtain fine-grained segmented masks. Skip-connection architecture is involved and modified to propagate spatial information to the decoder network. Preliminary experiments are conducted on 30 patients. Experimental results show our model outperforms all baseline models, with improvements of 4.17%. An ablation study is performed, and the effectiveness of the novel loss function is validated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659888 | PMC |
http://dx.doi.org/10.3390/s21237877 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!