AI Article Synopsis

  • The paper introduces a new design for a planar coil antenna integrated into the stainless-steel layer of a fiber metal laminate (FML) and evaluates its performance on various conductive substrates, particularly carbon-fiber-reinforced polymers (CFRP).
  • It examines how different layer configurations of the FML affect antenna performance and explores methods to mitigate these variations, aiming to create a wireless self-sustained sensor for structural health monitoring (SHM).
  • Initial tests show that the antenna prototype can generate up to 11 mW of power for a sensor node embedded within the FML, validating the proposed design and fabrication process.

Article Abstract

This paper presents the novel concept of structuring a planar coil antenna structured into the outermost stainless-steel layer of a fiber metal laminate (FML) and investigating its performance. Furthermore, the antenna is modified to sufficiently work on inhomogeneous conductive substrates such as carbon-fiber-reinforced polymers (CFRP) independent from their application-dependent layer configuration, since the influence on antenna performance was expected to be configuration-dependent. The effects of different stack-ups on antenna characteristics and strategies to cope with these influences are investigated. The purpose was to create a wireless self-sustained sensor node for an embedded structural health monitoring (SHM) system inside the monitored material itself. The requirements of such a system are investigated, and measurements on the amount of wireless power that can be harvested are conducted. Mechanical investigations are performed to identify the antenna shape that produces the least wound to the material, and electrical investigations are executed to prove the on-conductor optimization concept. Furthermore, a suitable process to fabricate such antennas is introduced. First measurements fulfilled the expectations: the measured antenna structure prototype could provide up to 11 mW to a sensor node inside the FML component.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659938PMC
http://dx.doi.org/10.3390/s21237841DOI Listing

Publication Analysis

Top Keywords

sensor node
8
antenna
6
stainless-steel antenna
4
antenna conductive
4
conductive substrate
4
substrate shm
4
shm sensor
4
sensor system
4
system high
4
high power
4

Similar Publications

Wireless sensor networks (WSNs) are imperative to a huge range of packages, along with environmental monitoring, healthcare structures, army surveillance, and smart infrastructure, however they're faced with numerous demanding situations that impede their functionality, including confined strength sources, routing inefficiencies, security vulnerabilities, excessive latency, and the important requirement to keep Quality of Service (QoS). Conventional strategies generally goal particular troubles, like strength optimization or improving QoS, frequently failing to provide a holistic answer that effectively balances more than one crucial elements concurrently. To deal with those challenges, we advocate a novel routing framework that is both steady and power-efficient, leveraging an Improved Type-2 Fuzzy Logic System (IT2FLS) optimized by means of the Reptile Search Algorithm (RSA).

View Article and Find Full Text PDF

The best layout design related to the sensor node distribution represents one among the major research questions in Wireless Sensor Networks (WSNs). It has a direct impact on WSNs' cost, detection capabilities, and monitoring quality. The optimization of several conflicting objectives, including as load balancing, coverage, cost, lifetime, connection, and energy consumption of sensor nodes, is necessary for layout optimization.

View Article and Find Full Text PDF

Energy efficiency plays a major role in sustaining lifespan and stability of the network, being one of most critical factors in wireless sensor networks (WSNs). To overcome the problem of energy depletion in WSN, this paper proposes a new Energy Efficient Clustering Scheme named African Vulture Optimization Algorithm based EECS (AVOACS) using AVOA. The proposed AVOACS method improves clustering by including four critical terms: communication mode decider, distance of sink and nodes, residual energy and intra-cluster distance.

View Article and Find Full Text PDF

The detection and analysis of cancer cell exosomes with high sensitivity and precision are pivotal for the early diagnosis and treatment strategies of prostate cancer. To this end, a microfluidic chip, equipped with a cactus-like array substrate (CAS) based on surface-enhanced Raman spectroscopy (SERS) was designed and fabricated for the detection of exosome concentrations in Lymph Node Carcinoma of the Prostate (LNCaP). Double layers of polystyrene (PS) microspheres were self-assembled onto a polyethylene terephthalate (PET) film to form an ordered cactus-like nanoarray for detection and analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!