Numerical flow simulations play an important role in polymer processing. One of the essential prerequisites for accurate and precise flow simulations is to obtain accurate materials functions. In the framework of the generalized Newtonian fluid model, one needs to obtain shear viscosity as a function of the rate-of-shear and temperature-as determined by rheometry-and then fitted to a mathematical model. Often, many subjectively perform the fitting without paying attention to the relative quality of the estimated parameters. This paper proposes a unique iterative algorithm for fitting the rate-of-shear and temperature-dependent viscosity model under the time-temperature superposition (TTS) principle. Proof-of-concept demonstrations are shown using the five-parameter Carreau-Yasuda model and experimental data from small-amplitude oscillatory shear (SAOS) measurements. It is shown that the newly proposed iterative algorithm leads to a more accurate representation of the experimental data compared to the traditional approach. We compare their performance in studies of the steady isothermal flow of a Carreau-Yasuda model fluid in a straight, circular tube. The two sets of parameters, one from the traditional approach and the other from the newly proposed iterative approach, show considerable differences in flow simulation. The percentage difference between the two predictions can be as large as 10% or more. Furthermore, even in cases where prior knowledge of the TTS shifting factors is not available, the newly proposed iterative approach can still yield a good fit to the experimental data, resulting in both the shifting factors and parameters for the non-Newtonian fluid model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659470 | PMC |
http://dx.doi.org/10.3390/polym13234185 | DOI Listing |
Wearable Technol
December 2024
Biorobotics Laboratory, EPFL, Lausanne, Vaud, Switzerland.
Neuromuscular controllers (NMCs) offer a promising approach to adaptive and task-invariant control of exoskeletons for walking assistance, leveraging the bioinspired models based on the peripheral nervous system. This article expands on our previous development of a novel structure for NMCs with modifications to the virtual muscle model and reflex modulation strategy. The modifications consist firstly of simplifications to the Hill-type virtual muscle model, resulting in a more straightforward formulation and reduced number of parameters; and second, using a finer division of gait subphases in the reflex modulation state machine, allowing for a higher degree of control over the shape of the assistive profile.
View Article and Find Full Text PDFWearable Technol
November 2024
BruBotics, Vrije Universiteit Brussel, Brussels, 1050, Belgium.
Advancements in wearable robots aim to improve user motion, motor control, and overall experience by minimizing energetic cost (EC). However, EC is challenging to measure and it is typically indirectly estimated through respiratory gas analysis. This study introduces a novel EMG-based objective function that captures individuals' natural energetic expenditure during walking.
View Article and Find Full Text PDFBiol Methods Protoc
January 2025
Department of Physics, George Washington University, Washington, DC 20052, United States.
A mixture-of-experts (MoE) approach has been developed to mitigate the poor out-of-distribution (OOD) generalization of deep learning (DL) models for single-sequence-based prediction of RNA secondary structure. The main idea behind this approach is to use DL models for in-distribution (ID) test sequences to leverage their superior ID performances, while relying on physics-based models for OOD sequences to ensure robust predictions. One key ingredient of the pipeline, named MoEFold2D, is automated ID/OOD detection via consensus analysis of an ensemble of DL model predictions without requiring access to training data during inference.
View Article and Find Full Text PDFRural Remote Health
January 2025
Indiana University School of Medicine, Indianapolis, Indiana, USA.
Introduction: Perceived social support is a psychological construct that is used to describe the 'perception of adequacy' of the support being provided by a person's social network. Higher perceived social support has been linked to multiple benefits across numerous studies over the past several decades and among multiple populations. The Multidimensional Scale of Perceived Social Support (MSPSS) is a 12-item scale to assess the construct of perceived social support.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing, China; School of Computer Science and Engineering, Southeast University, Nanjing, China.
Purpose: Dual-energy computed tomography (DECT) enables the differentiation of different materials. Additionally, DECT images consist of multiple scans of the same sample, revealing information similarity within the energy domain. To leverage this information similarity and address safety concerns related to excessive radiation exposure in DECT imaging, sparse view DECT imaging is proposed as a solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!