An approach to obtaining various nanostructures utilizing a well-studied polystyrene--poly(isoprene) or PS--PI diblock copolymer system through chemical modification reactions is reported. The complete hydrogenation and partial sulfonation to the susceptible carbon double bonds of the PI segment led to the preparation of [polystyrene--poly(ethylene--propylene)] as well as [polystyrene--poly(sulfonated isoprene--isoprene)], respectively. The hydrogenation of the polyisoprene block results in enhanced segmental immiscibility, whereas the relative sulfonation induces an amphiphilic character in the final modified material. The successful synthesis of the pristine diblock copolymer through anionic polymerization and the relative chemical modification reactions were verified using several molecular and structural characterization techniques. The thin film structure-properties relationship was investigated using atomic force microscopy under various conditions such as different solvents and annealing temperatures. Small-angle X-ray scattering was employed to identify the different observed nanostructures and their evolution upon thermal annealing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659476PMC
http://dx.doi.org/10.3390/polym13234167DOI Listing

Publication Analysis

Top Keywords

diblock copolymer
12
chemical modification
8
modification reactions
8
molecular structure-properties
4
structure-properties comparison
4
comparison anionically
4
anionically synthesized
4
synthesized diblock
4
copolymer ps--pi
4
ps--pi sequence
4

Similar Publications

Dynamic density functional theory (DDFT) is a fruitful approach for modeling polymer dynamics, benefiting from its multiscale and hybrid nature. However, the Onsager coefficient, the only free parameter in DDFT, is primarily derived empirically, limiting the accuracy and broad application of DDFT. Herein, we propose a machine learning-based, bottom-up workflow to directly extract the Onsager coefficient from molecular simulations, circumventing partly heuristic assumptions in traditional approaches.

View Article and Find Full Text PDF

Block copolymers (BCPs) can form nanoparticles having different morphologies that can be used as photonic nanocrystals and are a platform for drug delivery, sensors, and catalysis. In particular, BCP nanoparticles having disk-like shape have been recently discovered. Such nanodisks can be used as the next-generation antitumor drug delivery carriers; however, the applicability of the existing nanodisks is limited due to their poor or unknown ability to respond to external stimuli.

View Article and Find Full Text PDF

An organomagnesium complex containing an imino-phosphanamidinate ligand was found to be a competent catalyst for the ROP of -LA and ε-CL as well as their copolymerization sequential addition of monomers, resulting in the formation of PCL--PLA diblock copolymer. The polymers obtained were characterized by H, C, DOSY NMR, DSC, TGA, POM, and SEM.

View Article and Find Full Text PDF

Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).

View Article and Find Full Text PDF

Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide-based cell penetrating diblock copolymers of poly-L-ornithine (PLO) and polyproline (PLP) (PLO-PLP, n:m ratio 1:3) are described as mitochondria-targeting nanocarriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!