Modelling of Stem Cells Microenvironment Using Carbon-Based Scaffold for Tissue Engineering Application-A Review.

Polymers (Basel)

Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia.

Published: November 2021

A scaffold is a crucial biological substitute designed to aid the treatment of damaged tissue caused by trauma and disease. Various scaffolds are developed with different materials, known as biomaterials, and have shown to be a potential tool to facilitate in vitro cell growth, proliferation, and differentiation. Among the materials studied, carbon materials are potential biomaterials that can be used to develop scaffolds for cell growth. Recently, many researchers have attempted to build a scaffold following the origin of the tissue cell by mimicking the pattern of their extracellular matrix (ECM). In addition, extensive studies were performed on the various parameters that could influence cell behaviour. Previous studies have shown that various factors should be considered in scaffold production, including the porosity, pore size, topography, mechanical properties, wettability, and electroconductivity, which are essential in facilitating cellular response on the scaffold. These interferential factors will help determine the appropriate architecture of the carbon-based scaffold, influencing stem cell (SC) response. Hence, this paper reviews the potential of carbon as a biomaterial for scaffold development. This paper also discusses several crucial factors that can influence the feasibility of the carbon-based scaffold architecture in supporting the efficacy and viability of SCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658938PMC
http://dx.doi.org/10.3390/polym13234058DOI Listing

Publication Analysis

Top Keywords

carbon-based scaffold
12
scaffold
8
cell growth
8
cell
5
modelling stem
4
stem cells
4
cells microenvironment
4
microenvironment carbon-based
4
scaffold tissue
4
tissue engineering
4

Similar Publications

Triplet-ground-state nonalternant nanographene with high stability and long spin lifetimes.

Nat Commun

January 2025

Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Hong Kong, China.

High-spin carbon-based polyradicals exhibit significant potential for applications in quantum information storage and sensing; however, their practical application is hampered by limited structural diversity and chemical instability. Here, we report a straightforward synthetic and isolation method for synthesizing a nonalternant nanographene (1) with a triplet ground state. Moving beyond the classic m-xylylene scaffold for high-spin organic molecules, seven-five-seven (7-5-7)-membered rings are introduced to create stable high-spin diradicals with half-lives (t) as long as 101 days.

View Article and Find Full Text PDF

Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy.

View Article and Find Full Text PDF

Rigid, α-Helical Polypeptide Nanoprobes with Thermally Activated Delayed Fluorescence for Time-Resolved, High-Contrast Bioimaging.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.

Thermally activated delayed fluorescence (TADF)-based nanoprobes are promising candidates as bioimaging agents, yet the fine-tuning of their photophysical properties through the modulation of the surrounding matrices remains largely unexplored. Herein, we report the development of polypeptide-TADF nanoprobes, where the rigid, α-helical polypeptide scaffold plays a critical role in enhancing the emission intensity and lifetime of the TADF fluorophore for bioimaging. The α-helical scaffolds not only spatially separated TADF molecules to avoid self-quenching but also anchored the dyes with minimized rotation and vibration.

View Article and Find Full Text PDF

Carbon Based Polymeric Nanocomposite Hydrogel Bioink: A Review.

Polymers (Basel)

November 2024

Department of Biomedical Engineering & Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.

Carbon-based polymeric nanocomposite hydrogels (NCHs) represent a groundbreaking advancement in biomedical materials by integrating nanoparticles such as graphene, carbon nanotubes (CNTs), carbon dots (CDs), and activated charcoal (AC) into polymeric matrices. These nanocomposites significantly enhance the mechanical strength, electrical conductivity, and bioactivity of hydrogels, making them highly effective for drug delivery, tissue engineering (TE), bioinks for 3D Bioprinting, and wound healing applications. Graphene improves the mechanical and electrical properties of hydrogels, facilitating advanced tissue scaffolding and drug delivery systems.

View Article and Find Full Text PDF

Triskelion-Shaped Hexabenzocoronenes: Synthesis and Characterization of Tris-Substituted HBC Derivatives.

Chemistry

January 2025

Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Organic Chemistry, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.

The synthesis of unprecedented triskelion-shaped hexa-peri-hexabenzocoronenes with C, C or D symmertry is reported. We present a new, five step synthetic access to tris-iodinated HBC derivatives carrying different solubilizing moieties (tert-butyl and mesityl), which serve as suitable building blocks for further functionalization. These molecules can undergo Sonogashira cross coupling reactions to obtain a series of seven ethynyl tris-substituted HBCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!