A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preparation and Property of Bio-Polyimide/Halloysite Nanocomposite Based on 2,5-Furandicarboxylic Acid. | LitMetric

Preparation and Property of Bio-Polyimide/Halloysite Nanocomposite Based on 2,5-Furandicarboxylic Acid.

Polymers (Basel)

Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics, School of Material Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

Published: November 2021

Bio-based polyimide (PI)/halloysite nanotube (HNT) nanocomposites based on 2,5-furandicarboxylic acid were prepared by in situ polymerization. The pristine HNTs were modified by tetraethoxysilane (TEOS) and 4,4'-oxybisbenzenamine (ODA). The bio-based PI/HNT nanocomposite film exhibited lower moisture absorption than pure bio-based polyimide, showing that the water resistance of the bio-based polyimide film was improved. The thermal stability and glass transition temperature (Tg) of PI/HNTs nanocomposites were improved with the addition of modified HNTs. Both the tensile strength and Young's modulus of bio-based PI/HNTs nanocomposite films were enhanced. A 37.7% increase in tensile strength and a 75.1% increase in Young's modulus of bio-based PI/HNTs nanocomposite films, with 1 wt% of the modified HNTs, were achieved. The result confirmed that 2,5-furandicarboxylic acid could replace the oil-based material effectively, thus reducing pollution and protecting the environment. Finally, a preparation mechanism to prepare bio-based PI/HNTs nanocomposite is proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659181PMC
http://dx.doi.org/10.3390/polym13234057DOI Listing

Publication Analysis

Top Keywords

25-furandicarboxylic acid
12
bio-based polyimide
12
bio-based pi/hnts
12
pi/hnts nanocomposite
12
based 25-furandicarboxylic
8
modified hnts
8
tensile strength
8
young's modulus
8
modulus bio-based
8
nanocomposite films
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!