Topically applied antiviral creams and patches are the commercially available options for the treatment of herpes labialis. The nanofibrous patches could be a new direction in the formulation. The project aimed to formulate core-shell type nanofibrous scaffolds loaded with dexpanthenol (shell) and acyclovir (core). To achieve the fast dissolution of the antiviral agent, hydroxypropyl-beta-cyclodextrin was used as a complexation agent. The further aim was to study the prepared electrospun scaffolds' morphological- and physicochemical properties and antiviral activity. The fibrous samples were prepared by electrospinning using polyvinylpyrrolidone (PVP) as a shell, hypromellose (HPMC), and poly(ethylene oxide)(PEO) composite or poly(vinyl alcohol) (PVA) as a core polymer. The morphology of the prepared sample was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The SEM photos showed that fibrous structures were obtained. In the case of the PVA/PVP composition, the desired structure was obtained. While when HPMC-PEO was used as a core, the core-shell structure could not be observed. The Raman measurements revealed the mixed fibre structure of this sample. All of the fibrous samples released about 100% of acyclovir and also the dexpanthenol within 20 min. Coaxially electrospun fibres of different compositions were successfully prepared with various structural homogeneities, furthermore, a better antiviral activity could be achieved compared to the commercially available Zovirax cream.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.121354DOI Listing

Publication Analysis

Top Keywords

nanofibrous patches
8
treatment herpes
8
herpes labialis
8
antiviral activity
8
fibrous samples
8
electron microscopy
8
formulation acyclovir
4
acyclovir core-dexpanthenol
4
core-dexpanthenol sheath
4
sheath nanofibrous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!