Accurate estimates of genome sizes are important parameters for both theoretical and practical biodiversity genomics. Here we present a fast, easy-to-implement and accurate method to estimate genome size from the number of bases sequenced and the mean sequencing depth. To estimate the latter, we take advantage of the fact that an accurate estimation of the Poisson distribution parameter lambda is possible from truncated data, restricted to the part of the sequencing depth distribution representing the true underlying distribution. With simulations we show that reasonable genome size estimates can be gained even from low-coverage (10×), highly discontinuous genome drafts. Comparison of estimates from a wide range of taxa and sequencing strategies with flow cytometry estimates of the same individuals showed a very good fit and suggested that both methods yield comparable, interchangeable results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-0998.13570 | DOI Listing |
Sci Rep
January 2025
Department of Medicine and Life Sciences, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain.
Nepal, largely covered by the Himalayan mountains, hosts indigenous populations with distinct linguistic, cultural, and genetic characteristics. Among these populations, the Raute, Nepal's last nomadic hunter-gatherers, offer a unique insight into the genetic and demographic history of Himalayan foragers. Despite strong cultural connections to other regional foragers, the genetic history of this population remains understudied.
View Article and Find Full Text PDFMol Phylogenet Evol
January 2025
Department of Ecology and Evolutionary Biology and University of Michigan Herbarium, University of Michigan, Ann Arbor, MI 48109, USA.
Lorchels, also known as false morels (Gyromitra sensu lato), are iconic due to their brain-shaped mushrooms and production of gyromitrin, a deadly mycotoxin. Molecular phylogenetic studies have hitherto failed to resolve deep-branching relationships in the lorchel family, Discinaceae, hampering our ability to settle longstanding taxonomic debates and to reconstruct the evolution of toxin production. We generated 75 draft genomes from cultures and ascomata (some collected as early as 1960), conducted phylogenomic analyses using 1542 single-copy orthologs to infer the early evolutionary history of lorchels, and identified genomic signatures of trophic mode and mating-type loci to better understand lorchel ecology and reproductive biology.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
Pesticide application is essential for stabilizing agricultural production. However, the effects of increasing pesticide diversity on soil microbial functions remain unclear, particularly under varying nitrogen (N) fertilizer management practices. In this study, we investigated the stochasticity of soil microbes and multitrophic networks through amplicon sequencing, assessed soil community functions related to carbon (C), N, phosphorus (P), and sulfur (S) cycling, and characterized the dominant bacterial life history strategies via metagenomics along a gradient of increasing pesticide diversity under two N addition levels.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Radboud University Medical Center, Nijmegen, Gelderland, Netherlands.
Background: Commissural tracts are the white matter fibre bundles intercommunicating left and right brain hemispheres. They integrate many cognitive functions such as memory, verbal processing, motor and perceptual skills. Also, commissures connect specific layers of cortical neurons that are also lost in Alzheimer's disease (AD) and other neurodegenerative disorders.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.
Background: The risk of Alzheimer Disease (AD) conferred by APOE and other genetic factors differ across populations. The Cuban American (CA) population is 3-way admixed (European, African, and Amerindian) and vastly underrepresented in genetic studies. Previous genetic studies in this population have solely focused on APOE in AD and shown conflicting results regarding its effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!