https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=34882867&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 348828672022032120230302
1469-896X3132022MarProtein science : a publication of the Protein SocietyProtein SciStructural and functional characterization of fosfomycin resistance conferred by FosB from Enterococcus faecium.580590580-59010.1002/pro.4253The Gram-positive pathogen Enterococcus faecium is one of the leading causes of hospital-acquired vancomycin resistant enterococci (VRE) infections. E. faecium has extensive multidrug resistance and accounts for more than two million infections in the United States each year. FosB is a fosfomycin resistance enzyme found in Gram-positive pathogens like E. faecium. Typically, the FosB enzymes are Mn2+ -dependent bacillithiol (BSH) transferases that inactivate fosfomycin through nucleophilic addition of the thiol to the antibiotic. However, our kinetic analysis of FosBEf shows that the enzyme does not utilize BSH as a thiol substrate, unlike the other well characterized FosB enzymes. Here we report that FosBEf is a Mn2+ -dependent L-cys transferase. In addition, we have determined the three-dimensional X-ray crystal structure of FosBEf in complex with fosfomycin at a resolution of 2.0 Å. A sequence similarity network (SSN) was generated for the FosB family to investigate the unexpected substrate selectivity. Three non-conserved residues were identified in the SSN that may contribute to the substrate selectivity differences in the family of enzymes. Our structural and functional characterization of FosBEf establishes the enzyme as a potential target and may prove useful for future structure-based development of FosB inhibitors to increase the efficacy of fosfomycin.© 2021 The Protein Society.WiltsieVanessaVDepartment of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama, USA.TravisSkyeSDepartment of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama, USA.ShayMadeline RMRDepartment of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama, USA.SimmonsZacharyZDepartment of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama, USA.FrantomPatrickPDepartment of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama, USA.ThompsonMatthew KMK0000-0002-1964-3896Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama, USA.engJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov't20211222
United StatesProtein Sci92117500961-83680Anti-Bacterial Agents2N81MY12TEFosfomycinIMAnti-Bacterial AgentschemistrypharmacologyEnterococcus faeciumFosfomycinchemistrypharmacologyKineticsVancomycin-Resistant EnterococciBacillithiolESKAPE pathogensEnterococcus faeciumFosfomycinThiol transferaseantimicrobial resistancecrystallographyThere are no conflicts of interest to declare.
202112220211012021123202112106020223226020211291742202331ppublish34882867PMC886241310.1002/pro.4253Infographic . Antibiotic resistance the global threat. [accessed 2020. Mar 3].Tacconelli, E , Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic‐resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327.29276051Paterson DL, Bonomo RA. Extended‐spectrum β‐lactamases: A clinical update. Clin Microbiol Rev. 2005;18(4):657.PMC126590816223952Giddins MJ, Macesic N, Annavajhala MK, et al. Successive emergence of Ceftazidime‐Avibactam resistance through distinct genomic adaptations in blaKPC‐2‐harboring Klebsiella pneumoniae sequence type 307 isolates. Antimicrob Agents Chemother. 2018;62(3):e02101–e02117.PMC582611729263067Herc ES, Kauffman CA, Marini BL, Perissinotti AJ, Miceli MH. Daptomycin nonsusceptible vancomycin resistant enterococcus bloodstream infections in patients with hematological malignancies: Risk factors and outcomes. Leuk Lymphoma. 2017;58(12):2852–2858.28402152Iguchi S, Mizutani T, Hiramatsu K, Kikuchi K. Rapid acquisition of linezolid resistance in methicillin‐resistant Staphylococcus aureus: Role of hypermutation and homologous recombination. PLoS One. 2016;11(5):e0155512.PMC486835227182700Lebreton F, van Schaik W, Manson McGuire A, et al. Emergence of epidemic multidrug‐resistant Enterococcus faecium from animal and commensal strains. MBio. 2013;4(4):e00534–e00513.PMC374758923963180Arias CA, Murray BE. Emergence and management of drug‐resistant enterococcal infections. Expert Rev Anti Infect Ther. 2008;6(5):637–655.18847403Uttley AH, Collins CH, Naidoo J, George RC. Vancomycin‐resistant enterococci. Lancet. 1988;1(8575–6):57–58.2891921Chiang H‐Y, Perencevich EN, Nair R, et al. Incidence and outcomes associated with infections caused by Vancomycin‐resistant enterococci in the United States: Systematic literature review and meta‐analysis. Infect Control Hosp Epidemiol. 2017;38(2):203–215.27825401Prematunge C, MacDougall C, Johnstone J, et al. VRE and VSE bacteremia outcomes in the era of effective VRE therapy: A systematic review and meta‐analysis. Infect Control Hosp Epidemiol. 2016;37(1):26–35.PMC470750826434609Satilmis L, Vanhems P, Bénet T. Outbreaks of Vancomycin‐resistant enterococci in hospital settings: A systematic review and calculation of the basic reproductive number. Infect Control & Hosp Epidemiol. 2016;37(3):289–294.26669221Qu TT, Shi KR, Ji JS, et al. Fosfomycin resistance among vancomycin‐resistant enterococci owing to transfer of a plasmid harbouring the fosB gene. Int J Antimicrob Agents. 2014;43(4):361–365.24388115Sun L, Zhang P, Qu T, et al. Identification of novel conjugative plasmids with multiple copies of fosB that confer high‐level Fosfomycin resistance to Vancomycin‐resistant enterococci. Front Microbiol. 2017;8(1541).PMC555970428861056Guo Y, Tomich AD, McElheny CL, et al. High‐level Fosfomycin resistance in Vancomycin‐resistant Enterococcus faecium . Emerg Infect Dis. 2017;23(11):1902–1904.PMC565243229048285Falagas ME, Kastoris AC, Karageorgopoulos DE, Rafailidis PI. Fosfomycin for the treatment of infections caused by multidrug‐resistant non‐fermenting gram‐negative bacilli: A systematic review of microbiological, animal and clinical studies. Int J Antimicrob Agents. 2009;34(2):111–120.19403273Hamilton‐Miller JM. In vitro activity of fosfomycin against 'problem' gram‐positive cocci. Microbios. 1992;71(287):95–103.1453987Inouye S, Watanabe T, Tsuruoka T, Kitasato I. An increase in the antimicrobial activity in vitro of fosfomycin under anaerobic conditions. J Antimicrob Chemother. 1989;24(5):657–666.2599990Eschenburg S, Kabsch W, Healy ML, Schönbrunn E. A new view of the mechanisms of UDP‐N‐acetylglucosamine enolpyruvyl transferase (MurA) and 5‐enolpyruvylshikimate‐3‐phosphate synthase (AroA) derived from X‐ray structures of their tetrahedral reaction intermediate states. J Biol Chem. 2003;278(49):49215–49222.13129913Eschenburg S, Priestman M, Schönbrunn E. Evidence that the fosfomycin target Cys115 in UDP‐N‐acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. J Biol Chem. 2005;280(5):3757–3763.15531591Eschenburg S, Priestman MA, Abdul‐Latif FA, Delachaume C, Fassy F, Schönbrunn E. A novel inhibitor that suspends the induced fit mechanism of UDP‐N‐acetylglucosamine enolpyruvyl transferase (MurA). J Biol Chem. 2005;280(14):14070–14075.15701635Patel SS, Balfour JA, Bryson HM. Fosfomycin tromethamine. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy as a single‐dose oral treatment for acute uncomplicated lower urinary tract infections. Drugs. 1997;53(4):637–656.9098664Bernat BA, Laughlin LT, Armstrong RN. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry. 1997;36(11):3050–3055.9115979Arca P, Hardisson C, Suárez JE. Purification of a glutathione S‐transferase that mediates fosfomycin resistance in bacteria. Antimicrob Agents Chemother. 1990;34(5):844.PMC1717032193621Arca P, Rico M, Braña AF, Villar CJ, Hardisson C, Suárez JE. Formation of an adduct between fosfomycin and glutathione: A new mechanism of antibiotic resistance in bacteria. Antimicrob Agents Chemother. 1988;32(10):1552–1556.PMC1759173056239Bernat BA, Laughlin LT, Armstrong RN. Regiochemical and stereochemical course of the reaction catalyzed by the fosfomycin resistance protein, FosA . J Org Chem. 1998;63(11):3778–3780.Thompson MK, Keithly ME, Harp J, et al. Structural and chemical aspects of resistance to the antibiotic fosfomycin conferred by FosB from Bacillus cereus . Biochemistry. 2013;52(41):7350–7362.PMC410821424004181Lamers AP, Keithly ME, Kim K, et al. Synthesis of bacillithiol and the catalytic selectivity of FosB‐type fosfomycin resistance proteins. Org Lett. 2012;14(20):5207–5209.PMC354447923030527Fillgrove KL, Pakhomova S, Newcomer ME, Armstrong RN. Mechanistic diversity of fosfomycin resistance in pathogenic microorganisms. J Am Chem Soc. 2003;125(51):15730–15731.14677948Fillgrove KL, Pakhomova S, Schaab MR, Newcomer ME, Armstrong RN. Structure and mechanism of the genomically encoded fosfomycin resistance protein, FosX, from listeria monocytogenes. Biochemistry. 2007;46(27):8110–8120.17567049Travis S, Shay MR, Manabe S, Gilbert NC, Frantom PA, Thompson MK. Characterization of the genomically encoded fosfomycin resistance enzyme from Mycobacterium abscessus . Medchemcomm. 2019;10(11):1948–1957.PMC747815532952996Garcia P, Arca P, Evaristo Suarez J. Product of fosC, a gene from pseudomonas syringae, mediates fosfomycin resistance by using ATP as cosubstrate. Antimicrob Agents Chemother. 1995;39(7):1569–1573.PMC1627837492106Cao M, Bernat BA, Wang Z, Armstrong RN, Helmann JD. FosB, a cysteine‐dependent fosfomycin resistance protein under the control of sigma(W), an extracytoplasmic‐function sigma factor in Bacillus subtilis . J Bacteriol. 2001;183(7):2380–2383.PMC9514911244082Thompson MK, Keithly ME, Harp J, et al. Structural and chemical aspects of resistance to the antibiotic fosfomycin conferred by FosB from Bacillus cereus . Biochemistry. 2013;52(41):7350–7362.PMC410821424004181Thompson MK, Keithly ME, Goodman MC, et al. Structure and function of the genomically encoded fosfomycin resistance enzyme, FosB, from Staphylococcus aureus . Biochemistry. 2014;53(4):755–765.PMC398575624447055Perera VR, Newton GL, Pogliano K. Bacillithiol: A key protective thiol in Staphylococcus aureus . Expert Rev Anti Infect Ther. 2015;13(9):1089–1107.PMC491436426184907Roberts AA, Sharma SV, Strankman AW, Duran SR, Rawat M, Hamilton CJ. Mechanistic studies of FosB: A divalent‐metal‐dependent bacillithiol‐S‐transferase that mediates fosfomycin resistance in Staphylococcus aureus . Biochem J. 2013;451(1):69–79.PMC396097223256780Chang JM, Di Tommaso P, Taly JF, Notredame C. Accurate multiple sequence alignment of transmembrane proteins with PSI‐coffee. BMC Bioinform. 2012;13 Suppl 4 (Suppl 4):S1.PMC330370122536955Agilent CrysAlis PRO. Yarnton, Oxfordshire England: Aglient Technologies Ltd, 2014.McCoy AJ, Grosse‐Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Cryst. 2007;40(Pt 4):658–674.PMC248347219461840Emsley P, Cowtan K. Coot: Model‐building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 12 Pt 1):2126–2132.15572765Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum‐likelihood method. Acta Crystallogr D Biol Crystallogr. 1997;53(Pt 3):240–255.15299926Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera—A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612.15264254Atkinson HJ, Morris JH, Ferrin TE, Babbitt PC. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS One. 2009;4(2):e4345.PMC263115419190775Gerlt JA, Bouvier JT, Davidson DB, et al. Enzyme function initiative‐enzyme similarity tool (EFI‐EST): A web tool for generating protein sequence similarity networks. Biochim Biophys Acta. 2015;1854(8):1019–1037.PMC445755225900361Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504.PMC40376914597658