A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Risk factors for excess all-cause mortality during the first wave of the COVID-19 pandemic in England: A retrospective cohort study of primary care data. | LitMetric

Background: The COVID-19 pandemic's first wave in England during spring 2020 resulted in an approximate 50% increase in all-cause mortality. Previously, risk factors such as age and ethnicity, were identified by studying COVID-related deaths only, but these were under-recorded during this period.

Objective: To use a large electronic primary care database to estimate the impact of risk factors (RFs) on excess mortality in England during the first wave, compared with the impact on total mortality during 2015-19.

Methods: Medical history, ethnicity, area-based deprivation and vital status data were extracted for an average of 4.8 million patients aged 30-104 years, for each year between 18-March and 19-May over a 6-year period (2015-2020). We used Poisson regression to model total mortality adjusting for age and sex, with interactions between each RF and period (pandemic vs. 2015-19). Total mortality during the pandemic was partitioned into "usual" and "excess" components, assuming 2015-19 rates represented "usual" mortality. The association of each RF with the 2020 "excess" component was derived as the excess mortality ratio (EMR), and compared with the usual mortality ratio (UMR).

Results: RFs where excess mortality was greatest and notably higher than usual were age >80, non-white ethnicity (e.g., black vs. white EMR = 2.50, 95%CI 1.97-3.18; compared to UMR = 0.92, 95%CI 0.85-1.00), BMI>40, dementia, learning disability, severe mental illness, place of residence (London, care-home, most deprived). By contrast, EMRs were comparable to UMRs for sex. Although some co-morbidities such as cancer produced EMRs significantly below their UMRs, the EMRs were still >1. In contrast current smoking has an EMR below 1 (EMR = 0.80, 95%CI 0.65-0.98) compared to its UMR = 1.64.

Conclusions: Studying risk factors for excess mortality during the pandemic highlighted differences from studying cause-specific mortality. Our approach illustrates a novel methodology for evaluating a pandemic's impact by individual risk factor without requiring cause-specific mortality data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659693PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260381PLOS

Publication Analysis

Top Keywords

risk factors
16
excess mortality
16
mortality
13
total mortality
12
factors excess
8
all-cause mortality
8
primary care
8
rfs excess
8
mortality pandemic
8
mortality ratio
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!