A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mesenchymal stem cell extracellular vesicles mitigate vascular permeability and injury in the small intestine and lung in a mouse model of hemorrhagic shock and trauma. | LitMetric

Background: Hemorrhagic shock and trauma (HS/T)-induced gut injury may play a critical role in the development of multi-organ failure. Novel therapies that target gut injury and vascular permeability early after HS/T could have substantial impacts on trauma patients. In this study, we investigate the therapeutic potential of human mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC EVs) in vivo in HS/T in mice and in vitro in Caco-2 human intestinal epithelial cells.

Methods: In vivo, using a mouse model of HS/T, vascular permeability to a 10-kDa dextran dye and histopathologic injury in the small intestine and lungs were measured among mice. Groups were (1) sham, (2) HS/T + lactated Ringer's (LR), (3) HS/T + MSCs, and (4) HS/T + MSC EVs. In vitro, Caco-2 cell monolayer integrity was evaluated by an epithelial cell impedance assay. Caco-2 cells were pretreated with control media, MSC conditioned media (CM), or MSC EVs, then challenged with hydrogen peroxide (H2O2).

Results: In vivo, both MSCs and MSC EVs significantly reduced vascular permeability in the small intestine (fluorescence units: sham, 456 ± 88; LR, 1067 ± 295; MSC, 765 ± 258; MSC EV, 715 ± 200) and lung (sham, 297 ± 155; LR, 791 ± 331; MSC, 331 ± 172; MSC EV, 303 ± 88). Histopathologic injury in the small intestine and lung was also attenuated by MSCs and MSC EVs. In vitro, MSC CM but not MSC EVs attenuated the increased permeability among Caco-2 cell monolayers challenged with H2O2.

Conclusion: Mesenchymal stem cell EVs recapitulate the effects of MSCs in reducing vascular permeability and injury in the small intestine and lungs in vivo, suggesting MSC EVs may be a potential cell-free therapy targeting multi-organ dysfunction in HS/T. This is the first study to demonstrate that MSC EVs improve both gut and lung injury in an animal model of HS/T.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8866219PMC
http://dx.doi.org/10.1097/TA.0000000000003487DOI Listing

Publication Analysis

Top Keywords

msc evs
32
vascular permeability
20
small intestine
20
injury small
16
msc
14
mesenchymal stem
12
evs
9
stem cell
8
extracellular vesicles
8
permeability injury
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!