Restoring high-fidelity textures for 3D reconstructed models are an increasing demand in AR/VR, cultural heritage protection, entertainment, and other relevant fields. Due to geometric errors and camera pose drifting, existing texture mapping algorithms are either plagued by blurring and ghosting or suffer from undesirable visual seams. In this paper, we propose a novel tri-directional similarity texture synthesis method to eliminate the texture inconsistency in RGB-D 3D reconstruction and generate visually realistic texture mapping results. In addition to RGB color information, we incorporate a novel color image texture detail layer serving as an additional context to improve the effectiveness and robustness of the proposed method. First, we select an optimal texture image for each triangle face of the reconstructed model to avoid texture blurring and ghosting. During the selection procedure, the texture details are weighted to avoid generating texture chart partitions across high-frequency areas. Then, we optimize the camera pose of each texture image to align with the reconstructed 3D shape. Next, we propose a tri-directional similarity function to resynthesize the image context within the boundary stripe of texture charts, which can significantly diminish the occurrence of texture seams. Finally, we introduce a global color harmonization method to address the color inconsistency between texture images captured from different viewpoints. The experimental results demonstrate that the proposed method outperforms state-of-the-art texture mapping methods and effectively overcomes texture tearing, blurring, and ghosting artifacts.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2021.3134105DOI Listing

Publication Analysis

Top Keywords

texture
15
texture mapping
12
blurring ghosting
12
rgb-d reconstruction
8
camera pose
8
tri-directional similarity
8
proposed method
8
texture image
8
seamless texture
4
texture optimization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!