Hexavalent chromium removal by a resistant strain ZY-2009.

Environ Technol

College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China.

Published: May 2023

AI Article Synopsis

  • A specific bacterium, ZY-2009, isolated from activated sludge showed high resistance to Cr(VI) and effectively removed about 80% of it under optimal conditions.
  • Co-existing elements like Fe and Cu enhanced Cr(VI) removal, while Cd inhibited it, indicating the importance of environmental conditions on bioreduction efficiency.
  • The removal process primarily involved enzyme-mediated bioreduction, happening both outside and inside the bacterial cells, suggesting its potential for bioremediation in Cr(VI)-contaminated wastewater.

Article Abstract

Bioreduction of Cr(VI) to Cr(III) by reducing microbes has attracted increasing concern. Here, Cr(VI) removal capacity of a Cr(VI)-resistant bacterium isolated from activated sludge was investigated. Based on its physio-biochemical attributes and 16S rDNA sequence analysis, the strain was identified as ZY-2009. It grew normally in the media containing 10-100 mg/L Cr(VI), indicating its high resistance to Cr(VI). Under the optimal conditions of pH 7.0, inoculation amount 10%, and temperature 30°C, Cr(VI) was effectively removed, with a removal rate of ∼80%. Co-existing Fe and Cu greatly increased Cr(VI) removal, but Cd showed significant inhibition. Cr(VI) was removed mainly via enzyme-mediated bioreduction but not biosorption. Cr(VI) was reduced by different cell fractions (i.e. extracellular secretions, cytoplasm, and cell envelope), implying that Cr(VI) can be reduced both extracellularly and intracellularly. This strain can be used in the bioremediation of Cr(VI)-containing wastewater, with Fe and Cu as stimulators.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2021.2016994DOI Listing

Publication Analysis

Top Keywords

crvi
9
crvi removal
8
crvi reduced
8
hexavalent chromium
4
removal
4
chromium removal
4
removal resistant
4
resistant strain
4
strain zy-2009
4
zy-2009 bioreduction
4

Similar Publications

Sequestration of Cr(VI) onto polyethyleneimine-derivatized cellulose and its effect on the enzymatic degradation and microbiome viability.

Int J Biol Macromol

January 2025

Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India. Electronic address:

The extremely hazardous nature of Cr(VI) necessitates its sequestration in a sustainable and effective manner. Cellulose-derived materials, known for their eco-friendly properties, are widely employed in environmental remediation. To improve its adsorption capabilities for heavy metals, cellulose is often derivatized with moieties like amine, thiol, carboxylic acid, etc.

View Article and Find Full Text PDF

Polyaniline-ZnTi-LDH heterostructure with d-π coupling for enhanced photocatalysis of pollutant removal.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China. Electronic address:

Heterointerface engineering is an effective strategy to design and construct high-performance photocatalysts. Herein, polyaniline (PANI) nanoparticles and ZnTi layered double hydroxide (ZnTi-LDH) nanosheets were integrated to form organic-inorganic heterostructure (PANI/LDH) via d-π electronic coupling using in-situ polymerization for photocatalytic oxidation/reduction towards tetracycline (TC) and Cr(VI). The photocatalytic activity was closely related to feed amount of aniline (Ani) in the polymerization process, which the abundant PANI nanoparticles were evenly distributed on the surface of ZnTi-LDH nanosheets at the proper Ani feed amount, and thus reinforced d-π electronic coupling at the organic-inorganic interfaces more efficiently.

View Article and Find Full Text PDF

Herein, novel hollow ZnO and ZnO@SnInS core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnInS shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnInS core-shell nanorods. The ZnO@SnInS core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems.

View Article and Find Full Text PDF

There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.

View Article and Find Full Text PDF

Chronic exposure to hexavalent chromium induces esophageal tumorigenesis via activating the Notch signaling pathway.

J Zhejiang Univ Sci B

October 2024

Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.

Hexavalent chromium Cr(VI), as a well-established carcinogen, contributes to tumorigenesis for many human cancers, especially respiratory and digestive tumors. However, the potential function and relevant mechanism of Cr(VI) on the initiation of esophageal carcinogenesis are largely unknown. Here, immortalized human esophageal epithelial cells (HEECs) were induced to be malignantly transformed cells, termed HEEC-Cr(VI) cells, via chronic exposure to Cr(VI), which simulates the progress of esophageal tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!