Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As the volume of data associated with scientific research has exploded over recent years, the use of digital infrastructures to support this research and the data underpinning it has increased significantly. Physical chemists have been making use of eScience infrastructures since their conception, but in the last five years their usage has increased even more. While these infrastructures have not greatly affected the chemistry itself, they have in some cases had a significant impact on how the research is undertaken. The combination of the human effort of collaboration to create open source software tools and semantic resources, the increased availability of hardware for the laboratories, and the range of data management tools available has made the life of a physical chemist significantly easier. This review considers the different aspects of eScience infrastructures and explores how they have improved the way in which we can conduct physical chemistry research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-physchem-082120-041521 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!