Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coronary vascular disease (CHD) is one of the most fatal diseases worldwide. Cardio vascular diseases are not easily diagnosed in early disease stages. Early diagnosis is important for effective treatment, however, medical diagnoses are based on physician's personal experiences of the disease which increase time and testing cost to reach diagnosis. Physicians assess patients' condition based on electrocardiography, sonography and blood test results. In this research we develop classification model of the functional state of the cardiovascular system based on the monitoring of the evolution of the amplitudes of the first and second harmonics of the system rhythm of 0.1 Hz. We separate the signal to three streams; the first stream works with natural electro cardio signal, the other two streams are obtained as a result of frequency analysis of the amplitude- and frequency-detected electro cardio signal. We use sliding window of a demodulated electro cardio signal by means of amplitude and frequency detectors. The developed NN model showed an increase in accuracy of diagnostic efficiency by 11%. The neural network model can be trained to give accurate early detection of disease class.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10255842.2021.1986486 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!