Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
2D ferroelectrics with robust polar order in the atomic-scale thickness at room temperature are needed to miniaturize ferroelectric devices and tackle challenges imposed by traditional ferroelectrics. These materials usually have polar point group structure regarding as a prerequisite of ferroelectricity. Yet, to introduce polar structure into otherwise nonpolar 2D materials for producing ferroelectricity remains a challenge. Here, by combining first-principles calculations and experimental studies, it is reported that the native Ga vacancy-defects located in the asymmetrical sites in cubic defective semiconductor α-Ga Se can induce polar structure. Meanwhile, the induced polarization can be switched in a moderate energy barrier. The switched polarization is observed in 2D α-Ga Se nanoflakes of ≈4 nm with a high switching temperature up to 450 K. Such polarization switching could arise from the displacement of Ga vacancy between neighboring asymmetrical sites by applying an electric field. This work removes the point group limit for ferroelectricity, expanding the range of 2D ferroelectrics into the native defective semiconductors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202105599 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!