Nickel-catalyzed reductive cross-coupling of allylic difluorides with aryl iodides was achieved via allylic C-F bond activation. Based on this protocol, a series of γ-arylated monofluoroalkenes were synthesized in moderate to high yields with high Z-selectivities. Mechanistic studies suggest that the C-I bonds of the aryl iodides and the C-F bonds of the allylic difluorides were cleaved via oxidative addition and β-fluorine elimination, respectively, where the oxidative addition of less reactive C-F bonds was avoided to permit their transformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202103643 | DOI Listing |
Sci Bull (Beijing)
December 2024
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:
Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.
View Article and Find Full Text PDFOrg Lett
December 2024
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China.
Metal-catalytic conversion of polysulfide reagents is a major challenge in organic synthesis due to its challenging activation modes of multiple S-S bonds. The utilization of aryl di- and trithiosulfonates in nickel-catalyzed reductive coupling with aryl halides has been unexplored. Herein, we unprecedentedly describe PPh and Zn-collaborative reduction-induced nickel-catalytic selective C-S coupling of aryl di/trithiosulfonates with aryl halides to access sulfides over common disulfides or trisulfides.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Nickel-catalyzed cross-electrophile coupling (XEC) reactions of (hetero)aryl electrophiles represent appealing alternatives to palladium-catalyzed methods for biaryl synthesis, but they often generate significant quantities of homocoupling and/or proto-dehalogenation side products. In this study, an informer library of heteroaryl chloride and aryl bromide coupling partners is used to identify Ni-catalyzed XEC conditions that access high selectivity for the cross-product when using equimolar quantities of the two substrates. Two different catalyst systems are identified that show complementary scope and broad functional-group tolerance, and time-course data suggest that the two methods follow different mechanisms.
View Article and Find Full Text PDFJ Org Chem
December 2024
Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
Using amines in catalytic transfer hydrogenation (TH) is challenging, despite their potential availability as a hydrogen source. Here, we describe a photoredox/nickel-catalyzed TH of alkyne through an intermediary aminoalkyl Ni species. This reaction successfully provided functionalized ()-alkenes, such as (homo)allyl ethers, alcohols, and amides (/ = up to >99:1), and the reaction thus bypasses a limitation of substrate scope in TH using amine and a Lindlar catalyst.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
Herein, we disclose the nickel-catalyzed reductive cyanation of alkenyl tosylates and triflates. Both cyclic and acyclic alkenyl nitriles are produced in moderate to good yield using 2-(4-methoxyphenyl)-2-methylmalononitrile (MeO-MPMN), a novel transnitrilation, or nitrile transfer, reagent. A robustness screen was undertaken to demonstrate the functional group tolerance of this method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!