Extraction/purification of proteins, at both analytical and industrial levels, is a limiting step that usually requires the use of organic solvents and involves tedious work and a high cost. This work proposes a more sustainable alternative based on the use of magnetic nanoparticles (MNPs) coated with carboxylate-terminated carbosilane dendrons. MNPs coated with first- and second-generation carbosilane dendrons and bare MNPs were employed for the extraction of proteins with different molecular weights and charges. Interaction of proteins with MNPs significantly varied with the pH, the protein, and the dendron generation (different sizes and number of charges in the periphery). Optimal dendron:protein molar ratios and suitable conditions for disrupting interactions after protein extraction were also researched. Second-generation dendron-coated MNPs showed 100% retention capability for all proteins when using acidic conditions. They were reused without losing magnetism or interaction capacity after a disruption of protein-dendron interactions with 0.2% SDS at 100 °C for 10 min. The capacity of dendron-coated MNPs was successfully applied to the recovery/purification of proteins from two food by-products, olive seeds and cheese whey.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761721 | PMC |
http://dx.doi.org/10.1007/s00216-021-03794-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!