Litter Decomposition of in a Copper Tailing Areas With Different Restoration History: Fungal Community Dynamics and Driving Factors.

Front Microbiol

Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China.

Published: November 2021

Microorganisms drive litter decomposition while maintaining the chemical cycle of ecosystems. We used the dominant vegetation () in the mining area selected for this study for this experiment to explore fungal community characteristics, key fungal groups, and their associative driving factors during litter decomposition. Maximum litter C/N values occurred 100days after the commencement of the decomposition experiment during all different recovery years in this copper tailings area. Heavy metals in litter [copper (Cu), zinc (Zn), plumbum (Pb), and cadmium (Cd)] accumulated gradually with decomposition. The dominant fungal phyla observed in the community were Ascomycota and Basidiomycota, while the classes Sordariomycetes and Eurotiomycetes significantly increased as litter decomposition progressed. Degrees of connectivity and interaction between fungal communities were highest during the early litter decomposition stage. Sordariomycetes, Dothideomycetes, and Leotiomycetes all played critical roles in maintaining fungal community relationships. The effect of physicochemical properties and enzyme activities in litter was significant on the dominant fungi, while driving factors that affected fungal communities differed over different recovery stages. Total nitrogen (TN), heavy metals, pH, and enzyme activities in the little were significantly correlated with fungal community composition. Litter properties throughout the litter decomposition process mainly affected the dynamics of the fungal community structure. The main environmental factors that affected fungal community structure were copper content and pH. , , , , , and , which all played important roles in litter decomposition, positively correlated with heavy metals, sucrase, and catalase. Finally, results from this study will help us better clarify litter decomposition mechanisms in degraded ecosystems as well as provide a scientific basis for improving species cycling and nutrient transformation efficiency in mining ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8647173PMC
http://dx.doi.org/10.3389/fmicb.2021.780015DOI Listing

Publication Analysis

Top Keywords

litter decomposition
32
fungal community
24
litter
12
driving factors
12
heavy metals
12
fungal
10
decomposition
9
fungal communities
8
enzyme activities
8
factors fungal
8

Similar Publications

Microbial Community Structure, Diversity, and Succession During Decomposition of Kiwifruit Litters with Different Qualities.

Microorganisms

December 2024

Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.

There are differences in the litter quality and decomposition rate of kiwifruit varieties, but it is not clear whether these differences are related to microbial communities. The leaf litters of two kiwifruit varieties ( cv 'Hongyang' and cv 'Jinyan') were taken as objects, and the structure, diversity, and succession of the soil microbial communities were analyzed using an in situ decomposition experiment. Moreover, the contents of C, N, P, and K in the litters during decomposition were analyzed.

View Article and Find Full Text PDF

Patterns and Driving Factors of Litter Decomposition Rates in Global Dryland Ecosystems.

Glob Chang Biol

January 2025

State Key Laboratory of Urban and Regional Ecology, Research Center for eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.

Litter decomposition is essential in linking aboveground and belowground carbon, nutrient cycles, and energy flows within ecosystems. This process has been profoundly impacted by global change, particularly in drylands, which are highly susceptible to both anthropogenic and natural disturbances. However, a significant knowledge gap remains concerning the extent and drivers of litter decomposition across different dryland ecosystems, limiting our understanding of its role in ecosystem metabolism.

View Article and Find Full Text PDF

The concept of "blue carbon" is, in this study, critically evaluated with respect to its definitions, measuring approaches, and time scales. Blue carbon deposited in ocean sediments can only counteract anthropogenic greenhouse gas (GHG) emissions if stored on a long-term basis. The focus here is on the coastal blue carbon ecosystems (BCEs), mangrove forests, saltmarshes, and seagrass meadows due to their high primary production and large carbon stocks.

View Article and Find Full Text PDF

Early allelopathic input and later nutrient addition mediated by litter decomposition of invasive affect native plant and facilitate its invasion.

Front Plant Sci

December 2024

Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.

Litter decomposition is essential for nutrient and chemical cycling in terrestrial ecosystems. Previous research on litter decomposition has often underestimated its impact on soil nutrient dynamics and allelopathy. To address this gap, we conducted a comprehensive study involving both field and greenhouse experiments to examine the decomposition and allelopathic effects of the invasive L.

View Article and Find Full Text PDF

Alpine wet meadows are known as NO sinks due to nitrogen (N) limitation. However, phosphate addition and N deposition can modulate this limitation, and little is known about their combinative effects on NO emission from the Qinghai-Tibet Plateau in wet meadows. This study used natural wet meadow as the control treatment (CK) and conducted experiments with N (CONH addition, N15), P (NaHPO addition, P15), and their combinations (CONH and NaHPO addition, N15P15) to investigate how N and P supplementation affected soil NO emissions in wet meadow of QTP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!