AI Article Synopsis

  • Bipolar disorder (BPD) is a hereditary psychiatric condition that has struggled with identifying its genetic causes due to its complex nature and is linked to a higher risk of developing dementia.
  • Recent studies suggest that using advanced analytic strategies, including genome-wide association studies, can help uncover "missing heritability" by focusing on gene interactions within biological pathways.
  • The research identified 87 significant pathways related to BPD, most of which involve metabolic, neural, immune, and signaling processes, highlighting the importance of understanding these connections for better insights into psychiatric disorders and potential clinical applications.

Article Abstract

Bipolar disorder is a complex psychiatric trait that is also recognized as a high substantial heritability from a worldwide distribution. The success in identifying susceptibility loci for bipolar disorder (BPD) has been limited due to its complex genetic architecture. Growing evidence from association studies including genome-wide association (GWA) studies points to the need of improved analytic strategies to pinpoint the missing heritability for BPD. More importantly, many studies indicate that BPD has a strong association with dementia. We conducted advanced pathway analytics strategies to investigate synergistic effects of multilocus within biologically functional pathways, and further demonstrated functional effects among proteins in subnetworks to examine mechanisms underlying the complex nature of bipolarity using a GWA dataset for BPD. We allowed bipolar susceptible loci to play a role that takes larger weights in pathway-based analytic approaches. Having significantly informative genes identified from enriched pathways, we further built function-specific subnetworks of protein interactions using MetaCore. The gene-wise scores (i.e., minimum -value) were corrected for the gene-length, and the results were corrected for multiple tests using Benjamini and Hochberg's method. We found 87 enriched pathways that are significant for BPD; of which 36 pathways were reported. Most of them are involved with several metabolic processes, neural systems, immune system, molecular transport, cellular communication, and signal transduction. Three significant and function-related subnetworks with multiple hotspots were reported to link with several Gene Ontology processes for BPD. Our comprehensive pathway-network frameworks demonstrated that the use of prior knowledge is promising to facilitate our understanding between complex psychiatric disorders (e.g., BPD) and dementia for the access to the connection and clinical implications, along with the development and progression of dementia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645771PMC
http://dx.doi.org/10.3389/fnmol.2021.772584DOI Listing

Publication Analysis

Top Keywords

bipolar disorder
12
complex nature
8
genome-wide association
8
complex psychiatric
8
enriched pathways
8
bpd
7
complex
5
genetic pathways
4
pathways functional
4
subnetworks
4

Similar Publications

Given the influence of cognitive abilities on life outcomes, there is inherent value in identifying genes involved in controlling learning and memory. Further, cognitive dysfunction is a core feature of many neuropsychiatric disorders. Here, we use a combinatory in silico approach to identify human gene targets that will have an especially high likelihood of individually and directly impacting cognition.

View Article and Find Full Text PDF

Background: The basolateral complex of the amygdala is a crucial neurobiological site for Pavlovian conditioning. Investigations into volumetric alterations of the basolateral amygdala in individuals with major depressive disorder (MDD) have yielded conflicting results. These may be reconciled in an inverted U-shape allostatic growth trajectory.

View Article and Find Full Text PDF

Background: Klotho and neurotrophic factors, including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF), have been shown to play a role in cognitive functions. However, these molecules have not been investigated in bipolar disorder simultaneously to assess the interactions among them and their relationships with cognitive functions. This study investigated the relationships among cognitive function, klotho, and neurotrophic factors in patients with bipolar disorder in the remission period.

View Article and Find Full Text PDF

Exploring the Different Impacts of Ketamine on Neurotrophic Factors and Inflammatory Parameters in a Cecal Ligation and Puncture-Induced Sepsis Model.

Neurotox Res

January 2025

Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.

Given ketamine's conflicting impacts on the central nervous system, investigating its effects within an inflammatory context becomes crucial. This study aimed to assess the impact of varying ketamine doses on neurotrophin and inflammatory cytokine levels within the brains of rats submitted to the sepsis model. Wistar rats were submitted to the cecal ligation and puncture (CLP) model of sepsis.

View Article and Find Full Text PDF

Psychiatric disorders are multifactorial and effective treatments are lacking. Probable contributing factors to the challenges in therapeutic development include the complexity of the human brain and the high polygenicity of psychiatric disorders. Combining well-powered genome-wide and brain-wide genetics and transcriptomics analyses can deepen our understanding of the etiology of psychiatric disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!