AI Article Synopsis

  • The study focuses on the σ receptor, which is significant in areas like cancer imaging and pain management, exploring its structure with the compounds roluperidone and PB28.
  • Researchers conducted a comprehensive docking screen of 490 million virtual molecules, synthesizing and testing 484 compounds to identify 127 new chemotypes with promising affinities.
  • The study demonstrates the potential of structure-based screening to rapidly discover new ligands that could help investigate the role of the σ receptor in pain, with promising results in a mouse model for neuropathic pain.

Article Abstract

The σ receptor has attracted intense interest in cancer imaging, psychiatric disease, neuropathic pain and other areas of biology. Here we determined the crystal structure of this receptor in complex with the clinical candidate roluperidone and the tool compound PB28. These structures templated a large-scale docking screen of 490 million virtual molecules, of which 484 compounds were synthesized and tested. We identified 127 new chemotypes with affinities superior to 1 μM, 31 of which had affinities superior to 50 nM. The hit rate fell smoothly and monotonically with docking score. We optimized three hits for potency and selectivity, and achieved affinities that ranged from 3 to 48 nM, with up to 250-fold selectivity versus the σ receptor. Crystal structures of two ligands bound to the σ receptor confirmed the docked poses. To investigate the contribution of the σ receptor in pain, two potent σ-selective ligands and one potent σ/σ non-selective ligand were tested for efficacy in a mouse model of neuropathic pain. All three ligands showed time-dependent decreases in mechanical hypersensitivity in the spared nerve injury model, suggesting that the σ receptor has a role in nociception. This study illustrates the opportunities for rapid discovery of in vivo probes through structure-based screens of ultra large libraries, enabling study of underexplored areas of biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867396PMC
http://dx.doi.org/10.1038/s41586-021-04175-xDOI Listing

Publication Analysis

Top Keywords

neuropathic pain
8
areas biology
8
affinities superior
8
receptor
6
structures receptor
4
receptor enable
4
enable docking
4
docking bioactive
4
bioactive ligand
4
ligand discovery
4

Similar Publications

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF

The Unripe Carob Extract ( L.) as a Potential Therapeutic Strategy to Fight Oxaliplatin-Induced Neuropathy.

Nutrients

December 2024

Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy.

Background: Oxaliplatin-induced neuropathy (OIN) is a severe painful condition that strongly affects the patient's quality of life and cannot be counteracted by the available drugs or adjuvants. Thus, several efforts are devoted to discovering substances that can revert or reduce OIN, including natural compounds. The carob tree, L.

View Article and Find Full Text PDF

The Putative Antidiabetic Effect of on Diabetes Mellitus.

Int J Mol Sci

January 2025

Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, 11527 Athens, Greece.

Diabetes mellitus (DM), a global disease that significantly impacts public health, has become increasingly common over time. In this review, we aim to determine the potential benefits of St. John's Wort (SJW) as an adjunct therapy for DM.

View Article and Find Full Text PDF

CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes in both Type 1 (T1D) and Type 2 (T2D). While there are no specific medications to prevent or treat DPN, certain strategies can help halt its progression. In T1D, maintaining tight glycemic control through insulin therapy can effectively prevent or delay the onset of DPN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!