All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear, little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity and malignant clonal fitness. Here, using single-cell profiling and lineage tracing (SPLINTR)-an expressed barcoding strategy-we trace isogenic clones in three clinically relevant mouse models of acute myeloid leukaemia. We find that malignant clonal dominance is a cell-intrinsic and heritable property that is facilitated by the repression of antigen presentation and increased expression of the secretory leukocyte peptidase inhibitor gene (Slpi), which we genetically validate as a regulator of acute myeloid leukaemia. Increased transcriptional heterogeneity is a feature that enables clonal fitness in diverse tissues and immune microenvironments and in the context of clonal competition between genetically distinct clones. Similar to haematopoietic stem cells, leukaemia stem cells (LSCs) display heritable clone-intrinsic properties of high, and low clonal output that contribute to the overall tumour mass. We demonstrate that LSC clonal output dictates sensitivity to chemotherapy and, although high- and low-output clones adapt differently to therapeutic pressure, they coordinately emerge from minimal residual disease with increased expression of the LSC program. Together, these data provide fundamental insights into the non-genetic transcriptional processes that underpin malignant clonal fitness and may inform future therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-021-04206-7 | DOI Listing |
Pharmaceutics
January 2025
Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
Multiple Myeloma (MM) is a hematologic malignancy caused by clonally expanded plasma cells that produce a monoclonal immunoglobulin (M-protein), a personalized biomarker. Recently, we developed an ultra-sensitive mass spectrometry method to quantify minimal residual disease (MS-MRD) by targeting unique M-protein peptides. Therapeutic antibodies (t-Abs), key in MM treatment, often lead to deep and long-lasting responses.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Hematology, Theagenion Cancer Hospital, 54639 Thessaloniki, Greece.
Multiple Myeloma (MM) is a complex hematological malignancy characterized by the clonal proliferation of malignant plasma cells within bone marrow (BM) [...
View Article and Find Full Text PDFBiomedicines
January 2025
Division of Hematology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia.
Multiple myeloma (MM) is a hematologic disease characterized by the clonal expansion of malignant plasma cells that accumulate in the bone marrow, leading to osteolytic bone disease, hypercalcemia, anemia, and renal dysfunction. Daratumumab was the first monoclonal anti-CD38 antibody approved for the treatment of MM, initially in relapse/refractory settings and, more recently, for newly diagnosed patients. Increased first-line usage of daratumumab will also substantially change treatment approaches for patients with relapsed/refractory disease.
View Article and Find Full Text PDFExp Hematol
January 2025
Department of Medicine, Division of Hematology/Oncology & Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Nashville Veterans Affairs Hospital, Tennessee Valley Health Care, Department of Veterans Affairs, Nashville, TN. Electronic address:
Signaling responses to cytokines are disrupted in clonal hematopoiesis and myeloid malignancies. To better identify specific signaling response alterations in the presence or absence of TET2, we developed a 36-parameter CyTOF panel of both surface marker and phosphoprotein antigens in murine BM. We show diverse, cell-type specific inflammatory cytokine responses in healthy hematopoietic cells.
View Article and Find Full Text PDFSci Immunol
January 2025
Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA.
Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded CD8 cytotoxic T lymphocytes with in vitro specificity for patient-matched AML.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!