Kidney lifespan is a patient-oriented outcome that provides much needed context for understanding chronic kidney disease (CKD). Nephron endowment, age-associated decline in nephron number, kidney injury history and the intrinsic capacity of nephrons to adapt to haemodynamic and metabolic overload vary widely within the population. Defining percentiles of kidney function might therefore help to predict individual kidney lifespan and distinguish healthy ageing from progressive forms of CKD. In response to nephron loss, the remaining nephrons undergo functional and structural adaptations to meet the ongoing haemodynamic and metabolic demands of the organism. When these changes are no longer sufficient to maintain kidney cell homeostasis, remnant nephron demise occurs and CKD progression ensues. An individual's trajectory of glomerular filtration rate and albuminuria reflects the extent of nephron loss and adaptation of the remaining nephrons. Nephron overload represents the final common pathway of CKD progression and is largely independent of upstream disease mechanisms. Thus, interventions that efficiently attenuate nephron overload in early disease stages can protect remnant kidney cells and nephrons, and delay CKD progression. This Review provides a conceptual framework for individualized diagnosis, monitoring and treatment of CKD with the goal of maximizing kidney lifespan.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41581-021-00510-7DOI Listing

Publication Analysis

Top Keywords

kidney lifespan
16
nephron overload
12
ckd progression
12
kidney
9
nephron
8
haemodynamic metabolic
8
nephron loss
8
remaining nephrons
8
ckd
6
overload therapeutic
4

Similar Publications

Vascular calcification significantly increases the incidence of cardiovascular disease and all-cause mortality patients with chronic kidney disease(CKD), severely affecting their health and lifespan. However, the mechanisms underlying vascular calcification in CKD remain incompletely understood, and the available therapeutic agents are limited. Research has found that the transformation of vascular smooth muscle cells(VSMCs) from a contractile phenotype to an osteoblast-like phenotype is a key step in CKD-related vascular calcification.

View Article and Find Full Text PDF

The global issue of aging populations has become increasingly prominent, thus the research and development for anti-aging therapies to assure longevity as well as to ameliorate age-related complications is put high on the agenda. The young humoral milieu has been substantiated to impart youthful characteristics to aged cells or organs. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membrane-limited structures that serve as couriers of proteins and genetic material to regulate intercellular communication.

View Article and Find Full Text PDF

Background: Cisplatin-induced acute kidney injury (CKI) represents a severe renal dysfunction characterized by DNA damage and tubular injury. Fraxetin, derived from the Chinese herb Qinpi (Fraxinus bungeana A.DOC), is recognized for its neuroprotective effects and has been used for the prevention of various diseases.

View Article and Find Full Text PDF

Background: Alport syndrome (AS) is a multifaceted condition that primarily affects the basement membranes of the kidneys, ears, and eyes. AS is considered the second most common cause of hereditary renal failure, exhibiting varied clinical manifestations across different lifespans. The aim of this study is to investigate the clinical features and genetic profile of AS and to elucidate the genotype-phenotype correlation of AS.

View Article and Find Full Text PDF

Expanding the Landscape of Aging via Orbitrap Astral Mass Spectrometry and Tandem Mass Tag (TMT) Integration.

bioRxiv

December 2024

Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA.

Aging results in a progressive decline in physiological function due to the deterioration of essential biological processes, such as transcription and RNA splicing, ultimately increasing mortality risk. Although proteomics is emerging as a powerful tool for elucidating the molecular mechanisms of aging, existing studies are constrained by limited proteome coverage and only observe a narrow range of lifespan. To overcome these limitations, we integrated the Orbitrap Astral Mass Spectrometer with the multiplex tandem mass tag (TMT) technology to profile the proteomes of three brain tissues (cortex, hippocampus, striatum) and kidney in the C57BL/6JN mouse model, achieving quantification of 8,954 to 9,376 proteins per tissue (cumulatively 12,749 across all tissues).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!