A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Single-cell mapping of DNA G-quadruplex structures in human cancer cells. | LitMetric

Single-cell mapping of DNA G-quadruplex structures in human cancer cells.

Sci Rep

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.

Published: December 2021

G-quadruplexes (G4s) are four-stranded DNA secondary structures that form in guanine-rich regions of the genome. G4s have important roles in transcription and replication and have been implicated in genome instability and cancer. Thus far most work has profiled the G4 landscape in an ensemble of cell populations, therefore it is critical to explore the structure-function relationship of G4s in individual cells to enable detailed mechanistic insights into G4 function. With standard ChIP-seq methods it has not been possible to determine if G4 formation at a given genomic locus is variable between individual cells across a population. For the first time, we demonstrate the mapping of a DNA secondary structure at single-cell resolution. We have adapted single-nuclei (sn) CUT&Tag to allow the detection of G4s in single cells of human cancer cell lines. With snG4-CUT&Tag, we can distinguish cellular identity from a mixed cell-type population solely based on G4 features within individual cells. Our methodology now enables genomic investigations on cell-to-cell variation of a DNA secondary structure that were previously not possible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654944PMC
http://dx.doi.org/10.1038/s41598-021-02943-3DOI Listing

Publication Analysis

Top Keywords

dna secondary
12
individual cells
12
mapping dna
8
human cancer
8
secondary structure
8
cells
5
single-cell mapping
4
dna
4
dna g-quadruplex
4
g-quadruplex structures
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!