Xanthohumol (XN) is a prenylated flavonoid known for its antioxidant and anti-inflammatory effects and has been studied as an anti-cancer agent. In this study, we aimed at analysing the effect of XN on a primary colorectal adenocarcinoma cell line, HT29, on cell viability, inflammatory and antioxidant gene expression, and metabolism. For this purpose, cells were treated with 10 nM and 10 µM XN, and cell viability, HO production, lipid peroxidation and gene expression of inflammatory, antioxidant, and mitochondrial-related genes, as well as protein levels of metabolic enzymes, were determined. Results showed no significant effects on cell viability and a general decrease in pro-inflammatory, antioxidant and mitochondrial biogenesis gene expression with the lower concentration of XN. Furthermore, glucose and oxidative metabolism enzymes were also reduced. These results suggest that XN treatment, at low doses, could stop the proliferation and progression of HT29 cells by downregulating inflammatory signals and cell metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09637486.2021.2012561 | DOI Listing |
PLoS Genet
January 2025
Department of Biology, Boston University, Boston Massachusetts, United States of America.
The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.
View Article and Find Full Text PDFThe BMT CTN 1703 phase III trial confirmed that graft-versus-host disease (GVHD) prophylaxis with post-transplantation cyclophosphamide (PTCy), tacrolimus (Tac), and mycophenolate mofetil (MMF) results in superior GVHD-free, relapse-free survival (GRFS) compared with Tac/methotrexate (MTX) prophylaxis. This companion study assesses the effect of these regimens on patient-reported outcomes (PROs). Using the Lee Chronic GVHD Symptom Score and PROMIS subscales (physical function, GI symptoms, social role satisfaction) as primary end points and hemorrhagic cystitis symptoms and Lee subscales as secondary end points, responses from English and Spanish speakers were analyzed at baseline and days 100, 180, and 365 after transplant.
View Article and Find Full Text PDFJCO Clin Cancer Inform
January 2025
Emory University School of Medicine, Atlanta, GA.
Purpose: Immune checkpoint inhibitors (ICIs) have demonstrated promise in the treatment of various cancers. Single-drug ICI therapy (immuno-oncology [IO] monotherapy) that targets PD-L1 is the standard of care in patients with advanced non-small cell lung cancer (NSCLC) with PD-L1 expression ≥50%. We sought to find out if a machine learning (ML) algorithm can perform better as a predictive biomarker than PD-L1 alone.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104.
Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
Current dogma assumes that lipid asymmetry in biological membranes is actively maintained and dispensable for cell viability. The inner (cytoplasmic) membrane (IM) of is asymmetric. However, the molecular mechanism that maintains this uneven distribution is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!