Objective: Oblique lumbar interbody fusion (OLIF) is a surgical technique that utilizes a large interbody cage to indirectly decompress neural elements. The position of the cage relative to the vertebral body could affect the degree of foraminal decompression. Previous studies determined the position of the cage using plain radiographs, with conflicting results regarding the influence of the position of the cage to the degree of neural foramen decompression. Because of the cage obliquity, computed tomography (CT) has better accuracy than plain radiograph for the measurement of the obliquely inserted cage. The objective of this study is to find the correlation between the position of the OLIF cage with the degree of indirect decompression of foraminal stenosis using CT and magnetic resonance imaging (MRI).
Methods: We review imaging of 46 patients who underwent OLIF from L2-L5 for 68 levels. Segmental lordosis (SL) was measured in a plain radiograph. The positions of the cage were measured in CT. Spinal canal cross-sectional area (SCSA), and foraminal crosssectional area (FSCA) measurements using MRI were taken into consideration.
Results: Patients' mean age was 69.7 years. SL increases 3.0±5.1 degrees. Significant increases in SCSA (33.3%), FCSA (43.7% on the left and 45.0% on the right foramen) were found (p<0.001). Multiple linear regression analysis shows putting the cage in the more posterior position correlated with more increase of FSCA and decreases SL correction. The position of the cage does not affect the degree of the central spinal canal decompression. Obliquity of the cage does not result in different degrees of foraminal decompression between right and left side neural foramen.
Conclusion: Cage position near the posterior part of the vertebral body increases the decompression effect of the neural foramen while putting the cage in the more anterior position correlated with increases SL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752895 | PMC |
http://dx.doi.org/10.3340/jkns.2021.0105 | DOI Listing |
Sci Adv
January 2025
CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO and N or CH. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1).
View Article and Find Full Text PDFJBJS Essent Surg Tech
January 2025
Department of Neurosurgery, Center for Neuroscience and Spine, Virginia Mason Medical Center, Seattle, Washington.
Background: Prone transpsoas lumbar interbody fusion (PTP) is a newer technique to treat various spinal disc pathologies. PTP is a variation of lateral lumbar interbody fusion (LLIF) that is performed with the patient prone rather than in the lateral decubitus position. This approach offers similar benefits of lateral spinal surgery, which include less blood loss, shorter hospital stay, and quicker recovery compared with traditional open spine surgery.
View Article and Find Full Text PDFSpine Deform
January 2025
Pediatrics and Neurosurgery, Cedars Sinai Medical Center, Los Angeles, CA, USA.
Introduction: Congenital lumbar kyphosis is present in about 15% of patients with myelomeningocele. Worsening of deformity with complications such as chronic skin ulcers and bone exposure is common. In patients under 8 years of age, treatment becomes even more challenging: in addition to resecting the apex of the kyphotic deformity, we should ideally stabilize the spine with fixation methods that do not interrupt the growth of the rib cage, associated with the challenging pelvic fixation in this population.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CMEMS-UMinho, University of Minho, 4800-058 Guimarães, Portugal.
In biomedical research, telemetry is used to take automated physiological measurements wirelessly from animals, as it reduces their stress and allows recordings for large data collection over long periods. The ability to transmit high-throughput data from an in-body device (e.g.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
Objective: Combining oblique lumbar interbody fusion (OLIF) with posterior pedicle screw fixation (PPSF) has been proposed to reduce cage subsidence, especially in osteoporotic spines. Recently, anterolateral screw-rod fixation has gained interest as it allows direct pathology observation and avoids a posterior approach. However, controversies exist between anterolateral screw fixation systems and traditional PPSF due to variations in osteoporotic vertebral mineral density, screw fixation positions, and fixation methods (bicortical vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!