AI Article Synopsis

  • The study conducted a detailed analysis of dragonfly phylogeny using both morphological and molecular data, confirming 13 families as monophyletic and 8 as non-monophyletic.
  • Findings show Epiprocta and Zygoptera as monophyletic, while the relationships between different lineages, including sister lineages, were clarified.
  • The research highlighted the significance of fossils in understanding the evolution of key wing features, identifying two main wing character complexes tied to dragonfly flight adaptations.

Article Abstract

We undertook a comprehensive morphological and molecular phylogenetic analysis of dragonfly phylogeny, examining both extant and fossil lineages in simultaneous analyses. The legitimacy of higher-level family groups and the phylogenetic relationship between families were tested. Thirteen families were supported as monophyletic (Aeshnidae, Calopterygidae, Chlorocyphidae, Euphaeidae, Gomphidae, Isostictidae, Lestidae, Libellulidae, Petaluridae, Platystictidae, Polythoridae, Pseudostigmatidae and Synthemistidae) and eight as non-monophyletic (Amphipterygidae, Coenagrionidae, Corduliidae, Megapodagrionidae, Protoneuridae and Synlestidae), although Perilestidae and Platycnemididae were recovered as monophyletic under Bayesian analyses. Nine families were represented by one species, thus monophyly was not tested (Epiophlebiidae, Austropetaliidae, Chlorogomphidae, Cordulegastridae, Macromiidae, Chorismagrionidae, Diphlebiidae, Lestoideidae and Pseudolestidae). Epiprocta and Zygoptera were recovered as monophyletic. Ditaxinerua is supported as the sister lineage to Odonata, Epiophlebiidae and the lestid-like damselflies are sister to the Epiprocta and Zygoptera, respectively. Austropetaliidae + Aeshnidae is the sister lineage to the remaining Anisoptera. Tarsophlebia's placement as sister to Epiprocta or as sister to Epiprocta + Zygoptera was not resolved. Refinements are made to the current classification. Fossil taxa did not seem to provide signals crucial to recovering a robust phylogeny, but were critical to understanding the evolution of key morphological features associated with flight. Characters associated with wing structure were optimized revealing two wing character complexes: the pterostigma-nodal brace complex and the costal wing base & costal-ScP junction complex. In turn, these two complexes appear to be associated; the pterostigma-nodal brace complex allowing for further modification of the wing characters comprised within the costal wing base & costal-ScP junction complex leading the modern odonate wing. © The Willi Hennig Society 2008.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1096-0031.2007.00191.xDOI Listing

Publication Analysis

Top Keywords

odonate wing
8
recovered monophyletic
8
epiprocta zygoptera
8
sister lineage
8
sister epiprocta
8
pterostigma-nodal brace
8
brace complex
8
costal wing
8
wing base
8
base costal-scp
8

Similar Publications

Insect coloration has evolved in response to multiple pressures, and in Odonata (dragonflies and damselflies) a body of work supports a role of wing color in a variety of visual signals and potentially in thermoregulation. Previous efforts have focused primarily on melanistic coloration even though wings are often multicolored, and there has yet to be comprehensive comparative analyses of wing color across broad geographic regions and phylogenetic groups. Percher vs.

View Article and Find Full Text PDF

Scarcity of morphological data limits the potential of functional ecology approaches, which rely on traits to elucidate ecological processes. Dragonflies and damselflies (Odonata) are a frequently used ecological model for which, however, only limited morphological data is available. Here, it is presented a field sampling protocol to collect ecologically relevant yet largely unavailable morphological traits of Odonata.

View Article and Find Full Text PDF

Smoky rubyspot damselflies (Hetaerina titia Drury, 1773) are one of the most commonly encountered odonates along streams and rivers on both slopes of Central America and the Atlantic drainages in the United States and southern Canada. Owing to their highly variable wing pigmentation, they have become a model system for studying sexual selection and interspecific behavioral interference. Here, we sequence and assemble the genome of a female smoky rubyspot.

View Article and Find Full Text PDF

The earliest Eocene odonate genus Furagrion Petrulevičius et al. from the Danish Fur Formation is revised based on eighteen specimens, two of which apparently have been lost since their publication. The holotype of Phenacolestes jutlandicus Henriksen, type species of Furagrion, is incomplete and lacks the characters currently used to differentiate species, genera and higher taxa in Odonata.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!