Deciphering the spatial-temporal transcriptional landscape of human hypothalamus development.

Cell Stem Cell

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China. Electronic address:

Published: February 2022

The hypothalamus comprises various nuclei and neuronal subpopulations that control fundamental homeostasis and behaviors. However, spatiotemporal molecular characterization of hypothalamus development in humans is largely unexplored. Here, we revealed spatiotemporal transcriptome profiles and cell-type characteristics of human hypothalamus development and illustrated the molecular diversity of neural progenitors and the cell-fate decision, which is programmed by a combination of transcription factors. Different neuronal and glial fates are sequentially produced and showed spatial developmental asynchrony. Moreover, human hypothalamic gliogenesis occurs at an earlier stage of gestation and displays distinctive transcription profiles compared with those in mouse. Notably, early oligodendrocyte cells in humans exhibit different gene patterns and interact with neuronal cells to regulate neuronal maturation by Wnt, Hippo, and integrin signals. Overall, our study provides a comprehensive molecular landscape of human hypothalamus development at early- and mid-embryonic stages and a foundation for understanding its spatial and functional complexity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stem.2021.11.009DOI Listing

Publication Analysis

Top Keywords

hypothalamus development
16
human hypothalamus
12
landscape human
8
hypothalamus
5
deciphering spatial-temporal
4
spatial-temporal transcriptional
4
transcriptional landscape
4
human
4
development
4
development hypothalamus
4

Similar Publications

Depression, a serious mental illness, is characterized by high risk, high incidence, persistence, and tendency to relapse, posing a significant burden on global health. The connection between depression and gut microbiota is an emerging field of study in psychiatry and neuroscience. Understanding the gut-brain axis is pivotal for understanding the pathogenesis and treatment of depression.

View Article and Find Full Text PDF

Nesfatin-1 Neurons in the Ventral Premammillary Nucleus Integrate Metabolic and Reproductive Signals in Male Rats.

Int J Mol Sci

January 2025

Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary.

The ability to reproduce depends on metabolic status. In rodents, the ventral premammillary nucleus (PMv) integrates metabolic and reproductive signals. While leptin (adiposity-related) signaling in the PMv is critical for female fertility, male reproductive functions are strongly influenced by glucose homeostasis.

View Article and Find Full Text PDF

and miRNA regulate mammalian pubertal initiation and Gonadotropin-releasing hormone (GnRH) production. However, it remains unclear which signaling pathways regulates to modulate GnRH production. In this study, the mRNA expression levels of and in the pubertal and juvenile goat hypothalamus and pituitary gland were detected, and expression in the pubertal hypothalamus decreased significantly compared with that in juvenile tissues.

View Article and Find Full Text PDF

The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates.

View Article and Find Full Text PDF

A novel model of central precocious puberty disease: Paternal MKRN3 gene-modified rabbit.

Animal Model Exp Med

January 2025

Guangdong Medical Laboratory Animal Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Background: Makorin ring finger protein 3 gene (MKRN3) gene mutation is the most common genetic cause of central precocious puberty (CPP) in children. Due to the lack of ideal MKRN3-modified animal model (MKRN3-modified mice enter puberty only 4-5 days earlier than normal mice), the related research is limited.

Methods: Therefore, the MKRN3-modified rabbit was developed using CRISPR (clustered regularly interspaced short palindromic repeats) gene editing technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!