The hypothalamus comprises various nuclei and neuronal subpopulations that control fundamental homeostasis and behaviors. However, spatiotemporal molecular characterization of hypothalamus development in humans is largely unexplored. Here, we revealed spatiotemporal transcriptome profiles and cell-type characteristics of human hypothalamus development and illustrated the molecular diversity of neural progenitors and the cell-fate decision, which is programmed by a combination of transcription factors. Different neuronal and glial fates are sequentially produced and showed spatial developmental asynchrony. Moreover, human hypothalamic gliogenesis occurs at an earlier stage of gestation and displays distinctive transcription profiles compared with those in mouse. Notably, early oligodendrocyte cells in humans exhibit different gene patterns and interact with neuronal cells to regulate neuronal maturation by Wnt, Hippo, and integrin signals. Overall, our study provides a comprehensive molecular landscape of human hypothalamus development at early- and mid-embryonic stages and a foundation for understanding its spatial and functional complexity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.stem.2021.11.009 | DOI Listing |
Nutrients
January 2025
School of Pharmacy, Shaoyang University, Shaoyang 422000, China.
Depression, a serious mental illness, is characterized by high risk, high incidence, persistence, and tendency to relapse, posing a significant burden on global health. The connection between depression and gut microbiota is an emerging field of study in psychiatry and neuroscience. Understanding the gut-brain axis is pivotal for understanding the pathogenesis and treatment of depression.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary.
The ability to reproduce depends on metabolic status. In rodents, the ventral premammillary nucleus (PMv) integrates metabolic and reproductive signals. While leptin (adiposity-related) signaling in the PMv is critical for female fertility, male reproductive functions are strongly influenced by glucose homeostasis.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
School of Agriculture and Biology, Liaocheng University, Liaocheng 252059, China.
and miRNA regulate mammalian pubertal initiation and Gonadotropin-releasing hormone (GnRH) production. However, it remains unclear which signaling pathways regulates to modulate GnRH production. In this study, the mRNA expression levels of and in the pubertal and juvenile goat hypothalamus and pituitary gland were detected, and expression in the pubertal hypothalamus decreased significantly compared with that in juvenile tissues.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Zoology, University of Cambridge, Cambridge, UK.
The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates.
View Article and Find Full Text PDFAnimal Model Exp Med
January 2025
Guangdong Medical Laboratory Animal Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
Background: Makorin ring finger protein 3 gene (MKRN3) gene mutation is the most common genetic cause of central precocious puberty (CPP) in children. Due to the lack of ideal MKRN3-modified animal model (MKRN3-modified mice enter puberty only 4-5 days earlier than normal mice), the related research is limited.
Methods: Therefore, the MKRN3-modified rabbit was developed using CRISPR (clustered regularly interspaced short palindromic repeats) gene editing technology.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!