Understanding the salt-water separation mechanisms of reverse osmosis (RO) membranes is critical for the further development and optimization of RO technology. The solution-diffusion (SD) model is widely used to describe water and salt transport in RO, but it does not describe the intricate transport mechanisms of water molecules and ions through the membrane. In this study, we develop an ion transport model for RO, referred to as the solution-friction model, by rigorously considering the mechanisms of partitioning and the interactions among water, salt ions, and the membrane. Ion transport through the membrane is described by the extended Nernst-Planck equation, with the consideration of frictions between the species (i.e., ion, water, and membrane matrix). Water flow through the membrane is governed by the hydraulic pressure gradient and the friction between the water and membrane matrix as well as the friction between water and ions. The model is validated using experimental measurements of salt rejection and permeate water flux in a lab-scale, cross-flow RO setup. We then investigate the effects of feed salt concentration and hydraulic pressure on salt permeability, demonstrating strong dependence of salt permeability on feed salt concentration and applied pressure, starkly disparate from the SD model. Lastly, we develop a framework to analyze the pressure drop distribution across the membrane, demonstrating that cross-membrane transport dominates the overall pressure drop in RO, in marked contrast to the SD model that assumes no pressure drop across the membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.1c05649 | DOI Listing |
Phys Rev Lett
December 2024
Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Quantum magnetic materials can provide explicit realizations of paradigm models in quantum many-body physics. In this context, SrCu_{2}(BO_{3})_{2} is a faithful realization of the Shastry-Sutherland model for ideally frustrated spin dimers, even displaying several of its quantum magnetic phases as a function of pressure. We perform inelastic neutron scattering measurements on SrCu_{2}(BO_{3})_{2} at 5.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey. Electronic address:
Currently, the primary composition of fibrous filter materials predominantly relies on synthetic polymers derived from petroleum. The utilization of these polymers, as well as their production process, has a negative impact on the environment. Consequently, the adoption of air filter media fabricated from natural fibers would yield significant environmental benefits.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
Graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), have propelled advancements in biosensor research owing to their unique physicochemical and electronic characteristics. To ensure their safe and effective utilization in biological environments, it is crucial to understand how these graphene-based nanomaterials (GNMs) interact with a biological milieu. The present study depicts GNM-induced structural changes in a self-assembled phospholipid monolayer formed at an air-water interface that can be considered to represent one of the leaflets of a cellular membrane.
View Article and Find Full Text PDFACS Omega
December 2024
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
As natural resources continue to be exploited, dense medium cyclones (DMCs) are increasingly utilized for the preconcentration of low-grade ores to meet the demands for higher feed grade, increased processing capacity, and reduced energy consumption. However, determining the optimal fineness of ferrosilicon remains ambiguous for different types of ores and is often described as more of an art than a science. This paper investigates the subtle effects of ferrosilicon fineness on flow field characteristics, medium classification, and the ore separation process using a validated numerical approach, which integrates a two-fluid model, a turbulence dispersion model, and a discrete phase model.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Biopharm Drug Substance Development, GSK, King of Prussia, PA 19406, US.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!