Navigation ability varies widely across humans. Prior studies have reported that being younger and a male has an advantage for navigation ability. However, these studies have generally involved small numbers of participants from a handful of western countries. Here, we review findings from our project Sea Hero Quest, which used a video game for mobile and tablet devices to test 3.9 million people on their navigation ability, sampling across every nation-state and from 18 to 99 years of age. Results revealed that the task has good ecological validity and across all countries sufficiently sampled (N = 63), age is linked to a near-linear decline in navigation ability from the early 20s. All countries showed a male advantage, but this varied considerably and could be partly predicted by gender inequality. We found that those who reported growing up in a city were on average worse at navigating than those who grew up outside cities and that navigation performance helped identify those at greater genetic risk of Alzheimer's disease. We discuss the advantages and challenges of using a mobile app to study cognition and the future avenues for understanding individual differences in navigation ability arising from this research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tops.12590 | DOI Listing |
J Med Ethics
January 2025
Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.
Introduction: The integration of artificial intelligence (AI) into healthcare introduces innovative possibilities but raises ethical, legal and professional concerns. Assessing the performance of AI in core components of the United States Medical Licensing Examination (USMLE), such as communication skills, ethics, empathy and professionalism, is crucial. This study evaluates how well ChatGPT versions 3.
View Article and Find Full Text PDFJ Shoulder Elbow Surg
January 2025
Roth | McFarlane Hand & Upper Limb Center, St Joseph's Health Care London, London, ON, Canada.
Background: Precise and accurate glenoid preparation is important for the success of shoulder arthroplasty. Despite advancements in preoperative planning software and enabling technologies, most surgeons execute the procedure manually. Patient-specific instrumentation (PSI) facilitates accurate glenoid guide pin placement for cannulated reaming; however, few commercially available systems offer depth of reaming control.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
This paper presents a comprehensive approach to evaluating the ability of multi-legged robots to traverse confined and geometrically complex unstructured environments. The proposed approach utilizes advanced point cloud processing techniques integrating voxel-filtered cloud, boundary and mesh generation, and dynamic traversability analysis to enhance the robot's terrain perception and navigation. The proposed framework was validated through rigorous simulation and experimental testing with humanoid robots, showcasing the potential of the proposed approach for use in applications/environments characterized by complex environmental features (navigation inside collapsed buildings).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
Traditional Vision-and-Language Navigation (VLN) tasks require an agent to navigate static environments using natural language instructions. However, real-world road conditions such as vehicle movements, traffic signal fluctuations, pedestrian activity, and weather variations are dynamic and continually changing. These factors significantly impact an agent's decision-making ability, underscoring the limitations of current VLN models, which do not accurately reflect the complexities of real-world navigation.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Microelectronics and Artificial Intelligence, Kaili University, Kaili 556011, China.
From the discovery of carbon nanotubes to the ability to prepare high-purity semiconductor carbon nanotubes in large quantities, the large-scale fabrication of carbon nanotube transistors (CNT) will become possible. In this paper, a carbon nanotube transistor featuring a buried-gate structure, employing an etching process to optimize the surface flatness of the device and enhance its performance, is presented. This CNT thin-film transistor has a current switching ratio of 10, a threshold voltage of around 1 V, and a mobility that can reach 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!