Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Specially shaped high-nuclear lanthanide cluster assembly has attracted widespread attention, but the study of their self-assembly mechanism is still stagnant. Herein, we used a polydentate chelating bis-acylhydrazone ligand to construct a rare 16-nuclear dysprosium cluster 1 with a brucite-like structure. The capture agents, pivalic acid and di(pyridin-2-yl)methanone, were added into the reaction system, and the hexanuclear dysprosium cluster 2 and heptanuclear dysprosium cluster 3 were obtained, respectively. Clusters 2 and 3 support the out-to-in growth mechanism as key evidence. To the best of our knowledge, this study is the first to use truncation reaction to decipher the formation mechanism of high-nuclear lanthanide clusters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt03137f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!