AI Article Synopsis

  • CNApy is a Python-based open-source application designed for analyzing and designing metabolic networks using COBRA methods, featuring an intuitive graphical interface.
  • It enhances the user experience compared to existing tools, like CellNetAnalyzer, by incorporating advanced features from the Qt library.
  • The application can be easily installed via conda, and its source code is available for free under the Apache 2 license at GitHub.

Article Abstract

Summary: Constraint-based reconstruction and analysis (COBRA) is a widely used modeling framework for analyzing and designing metabolic networks. Here, we present CNApy, an open-source cross-platform desktop application written in Python, which offers a state-of-the-art graphical front-end for the intuitive analysis of metabolic networks with COBRA methods. While the basic look-and-feel of CNApy is similar to the user interface of the MATLAB toolbox CellNetAnalyzer, it provides various enhanced features by using components of the powerful Qt library. CNApy supports a number of standard and advanced COBRA techniques and further functionalities can be easily embedded in its GUI facilitating modular extension in the future.

Availability And Implementation: CNApy can be installed via conda and its source code is freely available at https://github.com/cnapy-org/CNApy under the Apache 2 license.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826044PMC
http://dx.doi.org/10.1093/bioinformatics/btab828DOI Listing

Publication Analysis

Top Keywords

metabolic networks
12
analyzing designing
8
designing metabolic
8
cnapy
5
cnapy cellnetanalyzer
4
cellnetanalyzer gui
4
gui python
4
python analyzing
4
networks summary
4
summary constraint-based
4

Similar Publications

To provide a comprehensive and updated mapping of observational studies assessing the relationship between periodontitis and systemic diseases through a bibliometric and visual analysis. A search was conducted using the Web of Science database, covering the period 1989 to 2024. The Medical Subject Headings (MeSH) from the US National Library of Medicine was used to categorize systemic conditions, focusing on terms unrelated to stomatognathic diseases.

View Article and Find Full Text PDF

Plants defend against chewing herbivores by up-regulating jasmonic acid (JA) signaling, which activates downstream signaling cascades and produces numerous secondary metabolites that act as defense molecules against the herbivores. Although secondary metabolism always remains a focus of research, primary metabolism is also reported to be realigned upon herbivory. However, JA signaling-mediated modulation of primary metabolites and their metabolic pathways in plants are mostly unexplored.

View Article and Find Full Text PDF

Background: Myocardial infarction (MI), one of the most serious cardiovascular diseases, is also affected by altered mitochondrial metabolism and immune status, but their crosstalk is poorly understood. In this paper, we use bioinformatics to explore key targets associated with mitochondrial metabolic function in MI.

Methods: The datasets (GSE775, GSE183272 and GSE236374) were from National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) in conjunction with mitochondrial gene data that were downloaded from the MitoCarta 3.

View Article and Find Full Text PDF

Integrating microfluidic and bioprinting technologies: advanced strategies for tissue vascularization.

Lab Chip

January 2025

Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.

Tissue engineering offers immense potential for addressing the unmet needs in repairing tissue damage and organ failure. Vascularization, the development of intricate blood vessel networks, is crucial for the survival and functions of engineered tissues. Nevertheless, the persistent challenge of ensuring an ample nutrient supply within implanted tissues remains, primarily due to the inadequate formation of blood vessels.

View Article and Find Full Text PDF

Yerba mate (YM, ) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!