Expression of class II genes of the major histocompatibility complex (MHC) has been studied in an Abelson-murine-leukemia-virus-transformed pre-B-cell line, R8, and its class II molecule (Ia)-negative variant, R8205. These variant cells contained barely detectable levels of RNA specific for all class II genes, including the nonpolymorphic invariant chain gene (Ii), and did not express cell surface Ia. Fusion of this murine Ia-negative cell line to the human Ia-positive Raji cell produced an interspecies hybridoma that expressed the murine Ia. These data are further evidence for the existence of a trans-acting factor(s) that can regulate class II gene expression. Furthermore, the T-cell-derived lymphokine B-cell-stimulatory factor 1 (BSF-1) induced expression of class II genes in the R8205 cells. Exposure of R8205 cells to an antibody that has been shown to mimic BSF-1 activity on normal B cells also resulted in expression of class II genes. These data demonstrate that three distinct signals--a lymphokine, an alloantibody binding to membrane structures, and an interspecies trans-acting factor--can induce expression of class II genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC323846 | PMC |
http://dx.doi.org/10.1073/pnas.83.13.4878 | DOI Listing |
Asian Pac J Cancer Prev
January 2025
Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Molecular Genetics and Cancer, Mangaluru, Karnataka, India.
Background: Oral cancer screening programs can aid in the early identification of potentially malignant oral lesions. The objective of the present study was to evaluate the effectiveness of the Oral Rub and Rinse (ORR) technique as an oral cancer screening tool and to test its potential in detecting genetic alterations in exfoliated cells obtained through ORR.
Methods: The screening programs were conducted in rural Dakshina Kannada and Udupi districts in Karnataka.
J Integr Plant Biol
January 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
The development of a single and multiplex gene editing system is highly desirable for either functional genomics or pyramiding beneficial alleles in crop improvement. CRISPR/Cas12i3, which belongs to the Class II Type V-I Cas system, has attracted extensive attention recently due to its smaller protein size and less restricted canonical "TTN" protospacer adjacent motif (PAM). However, due to its relatively lower editing efficiency, Cas12i3-mediated multiplex gene editing has not yet been documented in plants.
View Article and Find Full Text PDFPlant Cell
December 2024
Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
a major human fungal pathogen, can form biofilms on a variety of inert and biological surfaces. biofilms allow for immune evasion, are highly resistant to antifungal therapies, and represent a significant complication for a wide variety of immunocompromised patients in clinical settings. While transcriptional regulators and global transcriptional profiles of biofilm formation have been well-characterized, much less is known about translational regulation of this important virulence property.
View Article and Find Full Text PDFGlia
January 2025
Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!