Large-Area Nanosphere Self-Assembly Monolayers for Periodic Surface Nanostructures with Ultrasensitive and Spatially Uniform SERS Sensing.

Small

Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China.

Published: February 2022

Colloidal lithography provides a rapid and low-cost approach to construct 2D periodic surface nanostructures. However, an impressive demonstration to prepare large-area colloidal template is still missing. Here, a high-efficient and flexible technique is proposed to fabricate self-assembly monolayers consisting of orderly-packed polystyrene spheres at air/water interface via ultrasonic spray. This "non-contact" technique exhibits great advantages in terms of scalability and adaptability due to its renitent interface dynamic balance. More importantly, this technique is not only competent for self-assembly of single-sized polystyrene spheres, but also for binary polystyrene spheres, completely reversing the current hard situation of preparing large-area self-assembly monolayers. As a representative application, hexagonal-packed silver-coated silicon nanorods array (Si-NRs@Ag) is developed as an ultrasensitive surface-enhanced Raman scattering (SERS) substrate with very low limit-of-detection for selective detection of explosive 2,4,6-trinitrotoluene down to femtomolar (10 m) range. The periodicity and orderliness of the array allow hot spots to be designed and constructed in a homogeneous fashion, resulting in an incomparable uniformity and reproducibility of Raman signals. All these excellent properties come from the Si-NRs@Ag substrate based on the ordered structure, open surface, and wide-range electric field, providing a robust, consistent, and tunable platform for molecule trapping and SERS sensing for a wide range of organic molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202104202DOI Listing

Publication Analysis

Top Keywords

self-assembly monolayers
12
polystyrene spheres
12
periodic surface
8
surface nanostructures
8
sers sensing
8
large-area nanosphere
4
self-assembly
4
nanosphere self-assembly
4
monolayers periodic
4
nanostructures ultrasensitive
4

Similar Publications

Nanoplastics, emerging as pervasive environmental pollutants, pose significant threats to ecosystems and human health due to their small size and potential toxicity. However, detecting trace levels of nanoplastics remains challenging because of limitations in the current analytical methods. Herein, we propose a method that combines superhydrophobic enrichment with SERS analysis for detecting trace nanoplastics in aqueous environments.

View Article and Find Full Text PDF

Konjac glucomannan foams integrated with bilayer phase change microcapsules for efficient heat storage and thermal insulation.

Carbohydr Polym

March 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industry Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK. Electronic address:

The traditional foams can only block heat loss, and cannot effectively store and release heat energy on demand to extend the insulation time. In this work, the paraffin-rich monolayer microcapsules were prepared using negatively charged phosphorylated cellulose nanofibers (CNF) as the emulsifier of Pickering emulsion. The positive chitosan was assembled on the surface of the monolayer microcapsules through an electrostatic layer-by-layer self-assembly method to prepare the bilayer microcapsules.

View Article and Find Full Text PDF

Limited by the adsorption and diffusion rate of water molecules, traditional humidity sensors, such as those based on polymer electrolytes, porous ceramics, and metal oxides, typically have long response times, which hinder their application in monitoring transient humidity changes. Here we present an ultrafast humidity sensor with a millisecond-level response. The sensor is prepared by assembling monolayer graphene oxide quantum dots on silica microspheres using a simple electrostatic self-assembly technique.

View Article and Find Full Text PDF

Anchorable Polymers Enabling Ultra-Thin and Robust Hole-Transporting Layers for High-Efficiency Inverted Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.

Currently, the development of polymeric hole-transporting materials (HTMs) lags behind that of small-molecule HTMs in inverted perovskite solar cells (PSCs). A critical challenge is that conventional polymeric HTMs are incapable of forming ultra-thin and conformal coatings like self-assembly monolayers (SAMs), especially for substrates with rough surface morphology. Herein, we address this challenge by designing anchorable polymeric HTMs (CP1 to CP5).

View Article and Find Full Text PDF
Article Synopsis
  • The study uses density functional theory and microkinetic modeling to analyze the growth of hexagonal boron nitride (hBN) on a ruthenium surface, focusing on the process of chemical vapor deposition (CVD).
  • Four main stages of the growth process are detailed: adsorption and deprotonation of borazine, dimerization, stabilization of larger borazine polymers, and the formation of nanoporous intermediates.
  • Findings highlight the importance of the deprotonation sequence in nanostructure formation and provide insights for producing high-quality hBN monolayers, aligning well with experimental data for temperature variations and precursor exposure.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!