We hypothesize that dosage compensation of critical genes arises from systems-level properties for cancer cells to withstand the negative effects of aneuploidy. We identified several candidate genes in cancer multiomics data and developed a biocomputational platform to construct a mathematical model of their interaction network with micro-RNAs and transcription factors, where the property of dosage compensation emerged for and was dependent on the kinetic parameters of its feedback interactions with three micro-RNAs. These circuits were experimentally validated using a genetic tug-of-war technique to overexpress an exogenous , leading to overexpression of the three microRNAs involved and downregulation of endogenous In addition, overexpression or inhibition of its compensating miRNAs led to dosage-dependent cytotoxicity in -amplified colon cancer cells. Finally, we identified negative correlation of dosage compensation with patient survival in TCGA breast cancer patients, highlighting the potential of this mechanism to prevent aneuploid cancer progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627999 | PMC |
http://dx.doi.org/10.1016/j.isci.2021.103407 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!