In preparation for the redefinition of the International System of Units (SI), five different electronic measurements of the Boltzmann constant have been performed using different Johnson noise thermometry (JNT) systems over the past seven years. In this paper, we describe in detail the JNT system and uncertainty components associated with the most recent National Institute of Standards and Technology (NIST) determination of the Boltzmann constant: = 1.380642 9(69) × 10 J/K, with a relative standard uncertainty of 5.0 × 10 and relative offset of -4.05 × 10 from the Committee on Data for Science and Technology (CODATA) 2014 recommended value. We discuss the input circuits and the approach we used to match the frequency response of two noise sources. We present new measurements of the correlated noise of the 4 K on-chip resistors in the quantum-accurate, pseudorandom, voltage-noise source, which we used to estimate the correlated, frequency-dependent, nonthermal noise in our system. Finally, we contrast our system with those used in other measurements and speculate on future improvements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339765 | PMC |
http://dx.doi.org/10.6028/jres.122.046 | DOI Listing |
J Comput Chem
January 2025
Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
Voltage-dependent anion channel (VDAC) is the primary conduit for regulated passage of ions and metabolites into and out of a mitochondrion. Calculating the solvation free energy for VDAC is crucial for understanding its stability, function, and interactions within the cellular environment. In this article, numerical schemes for computing the total solvation free energy for VDAC-comprising electrostatic, ideal gas, and excess free energies plus the nonpolar energy-are developed based on a nonuniform size modified Poisson-Boltzmann ion channel (nuSMPBIC) finite element solver along with tetrahedral meshes for VDAC proteins.
View Article and Find Full Text PDFPhys Rev E
November 2024
Department of Physics "A. Pontremoli," University of Milan, via Celoria 16, 20133 Milan, Italy and Institute of Theoretical Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
The shear viscosity is a fundamental transport property of matter. Here we derive a general theory of the viscosity of gases based on the relativistic Langevin equation (deduced from a relativistic Lagrangian) and nonaffine linear response theory. The proposed relativistic theory is able to recover the viscosity of nonrelativistic classical gases, with all its key dependencies on mass, temperature, particle diameter, and Boltzmann constant, in the limit of Lorentz factor γ=1.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan.
Dopamine (DP), an essential neurotransmitter implicated in diverse brain functions, was investigated as a guest molecule within the host cavities of cucurbit[7]uril (CB7) and β-cyclodextrin (βCD) using isothermal titration calorimetry (ITC), UV-titration, H NMR, molecular dynamics (MD) and density functional theory (DFT) calculations. The experimentally estimated binding constants of the 1:1 complexes of DP with CB7 and βCD were found to be 5.3 × 10 and 2.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior 474011, India.
This study thoroughly examines the structural, mechanical, thermal, electronic, optical, and thermoelectric properties of RhMnZ (Z = Si, Ge) half-Heusler compounds, which feature 18 valence electrons. Using density functional theory (DFT) within the WIEN2k computational framework, the ground-state properties of these compounds were determined to establish a foundational understanding of their physical characteristics. To further assess their thermoelectric potential, the Boltzmann transport equation was applied with the constant relaxation time approximation, allowing for precise calculations of thermal and electrical conductivity.
View Article and Find Full Text PDFPhys Rev E
October 2024
LPTMS, UMR 8626, CNRS, Université Paris-Saclay, 91405 Orsay, France and ENS de Lyon, F-69364 Lyon, France.
The dynamics of a system composed of elastic hard particles confined by an isotropic harmonic potential are studied. In the low-density limit, the Boltzmann equation provides an excellent description, and the system does not reach equilibrium except for highly specific initial conditions: it generically evolves toward and stays in a breathing mode. This state is periodic in time, with a Gaussian velocity distribution, an oscillating temperature, and a density profile that oscillates as well.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!