Many species show replicated ecophenotypy due to recurring patterns of natural selection. Based on the presence or absence of pursuit predators, at least 17 species of fish repeatedly differentiated in body shape in a manner that increases burst swimming speed and the likelihood of predator escape. The predator-associated burst speed (PABS) ecophenotype is characterized by a small head and trunk and enlarged caudal region. Mechanisms promoting replicated phenotype-environment association include selection (without evolution), a single instance of adaptive evolution followed by biased habitat occupation, repeated instances of local adaptation, or adaptive phenotypic plasticity. Common garden rearing of mosquitofish, Gambusia affinis, demonstrated a likely heritable basis for PABS phenotypy, but it is unknown whether populations are otherwise genetically distinct or whether replicated ecophenotypy represents a single or replicated instances of adaptation. To genetically characterize the populations and test hypotheses of single or multiple adaptations, we characterized variation in 12 polymorphic DNA microsatellites in the previously studied G. affinis populations. Populations were genetically distinct by multilocus analysis, exhibited high allelic diversity, and were heterozygote deficient, which effects were attributed to G. affinis's shoaling nature and habitat patchiness. Genetic and phenotypic distances among populations were correlated for non-PABS but not PABS morphology. Multilocus analysis demonstrated ecophenotype polyphyly and scattered multivariate genetic structure which support only the replicated-adaptation model. As all of the diverse tests performed demonstrated lack of congruence between patterns of molecular genetic and PABS differentiation, it is likely that divergent natural selection drove multiple instances of adaptive evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733020PMC
http://dx.doi.org/10.1038/s41437-021-00487-wDOI Listing

Publication Analysis

Top Keywords

predator-associated burst
8
burst speed
8
replicated ecophenotypy
8
natural selection
8
adaptive evolution
8
populations genetically
8
genetically distinct
8
multilocus analysis
8
replicated
5
populations
5

Similar Publications

Predation exerts strong selection pressure on morphological traits and is often studied in freshwater fishes. A common morphological ecophenotype driven by predation from pursuit predators is the predator-associated burst speed (PABS) ecophenotype. This ecophenotype, characterized by a smaller head, smaller body, and larger caudal region, is commonly found in western mosquitofish (Gambusia affinis) residing in environments with sunfish (family Centrarchidae) predators.

View Article and Find Full Text PDF

Many species show replicated ecophenotypy due to recurring patterns of natural selection. Based on the presence or absence of pursuit predators, at least 17 species of fish repeatedly differentiated in body shape in a manner that increases burst swimming speed and the likelihood of predator escape. The predator-associated burst speed (PABS) ecophenotype is characterized by a small head and trunk and enlarged caudal region.

View Article and Find Full Text PDF

Human activities, such as species introductions, are dramatically and rapidly altering natural ecological processes and often result in novel selection regimes. To date, we still have a limited understanding of the extent to which such anthropogenic selection may be driving contemporary phenotypic change in natural populations. Here, we test whether the introduction of the piscivorous Nile perch, Lates niloticus, into East Africa's Lake Victoria and nearby lakes coincided with morphological change in one resilient native prey species, the cyprinid fish Rastrineobola argentea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!