Primary Sjögren's syndrome (pSS) is a highly heterogeneous disease in terms of clinical presentation ranging from a mild disease localised to the salivary and lacrimal glands, to multiorgan complications of various degrees of severity, finishing with the evolution, in around 5% of pSS patients, to B cell lymphomas most commonly arising in the inflamed salivary glands. Currently, there are poor positive or negative predictors of disease evolution able to guide patient management and treatment at early stages of the diseases. Recent understanding of the pathogenic mechanisms driving immunopathology in pSS, particularly through histological and transcriptomic analysis of minor and parotid salivary gland (SG) biopsies, has highlighted a high degree of cellular and molecular heterogeneity of the inflammatory lesions but also allowed the identification of clusters of patients with similar underlying SG immunopathology. In particular, patients presenting with high degrees of B/T cell infiltration and the formation of ectopic lymphoid structures (ELS) in the SG have been associated, albeit with conflicting results, with higher degree of disease severity and enhanced risk of lymphoma evolution, suggesting that a dysregulated adaptive immune response plays a key role in driving disease manifestations in pSS. Recent data from randomised clinical trials with novel biological therapies in pSS have also highlighted the potential role of SG immunopathology and molecular pathology in stratifying patients for trial inclusion as well as assessing proof of mechanisms in longitudinal SG biopsies before and after treatment. Although significant progress has been made in the understanding of disease pathogenesis and heterogeneity through cellular and molecular SG pathology, further work is needed to validate their clinical utility in routine clinical settings and in randomised clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.smim.2021.101547 | DOI Listing |
Alzheimers Dement
December 2024
Columbia University Irving Medical Center, New York, NY, USA.
Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Edith Cowan University, Perth, Western Australia, Australia.
Background: Accumulation of amyloid beta 42 (Aβ42) senile plaques is the most critical event leading to Alzheimer's disease (AD). Currently approved drugs for AD have not been able to effectively modify the disease. This has caused increasing research interests in health beneficial nutritious plant foods as viable alternative therapy to prevent or manage AD.
View Article and Find Full Text PDFBackground: Small, soluble oligomers, rather than mature fibrils, are the major neurotoxic agents in Alzheimer's disease (AD). In the last few years, Aprile and co-workers designed and purified a single-domain antibody (sdAb), called DesAb-O, with high specificity for Aβ oligomeric conformers. Recently, Cascella and co-workers showed that DesAb-O can selectively detect synthetic Aβ oligomers both in vitro and in cultured cells, neutralizing their associated neuronal dysfunction.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: Focusing on novel AD treatments, the TREAT-AD centers offer an array of free research tools, shared via the AD Knowledge Portal in a Target Enablement Package (TEP). This abstract showcases the research conducted by the IUSM-Purdue TREAT-AD Center, specifically focusing on Targeting class-II PI3K's as a potential breakthrough in AD therapy. Endocytosis within the brain encompasses diverse pathways for internalizing extracellular cargoes and receptors into cells.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Genome-wide association studies (GWAS) have identified close to one hundred loci associated with Alzheimer's disease (AD) risk. However, for most of these loci we do not understand the underlying mechanism leading to disease. Crispr genome editing in human induced pluripotent stem cells (hiPSCs) provides a model system to study the effects of these genetic variants in a disease relevant cell type.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!