Background: Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is a common type of acute encephalopathy in Japan; the condition is clinically characterized by prolonged seizures as the initial neurological symptom, followed by late seizures 4-6 days later. It is difficult to differentiate AESD from prolonged febrile seizures (PFSs). Here, we explored the use of electroencephalography to differentiate AESD from PFSs.

Methods: We studied the electroencephalograms (EEGs) of children <6 years of age diagnosed with AESD or PFSs; all EEGs were recorded within 48 h of seizure onset (i.e., before the late seizures of AESD). Two pediatric neurologists evaluated all EEGs, focusing on the basic rhythm, slowing during wakefulness/arousal by stimuli, spindles, fast waves, and slowing during sleep.

Results: The EEGs of 14 children with AESD and 31 children with PFSs were evaluated. Spindles were more commonly reduced or absent in children with AESD than in those with PFSs (71% vs. 31%, p = 0.021). Fast waves were also more commonly reduced or absent in children with AESD (21% vs. 0%, p = 0.030). The rates of all types of slowing did not differ between children with AESD and those with PFSs, but continuous or frequent slowing during sleep was more common in the former (50% vs. 17%, p = 0.035).

Conclusions: EEG findings may usefully differentiate AESD from PFSs. Reduced or absent spindles/fast waves and continuous or frequent slowing during sleep are suggestive of AESD in children with prolonged seizures associated with fever.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.braindev.2021.11.003DOI Listing

Publication Analysis

Top Keywords

acute encephalopathy
12
encephalopathy biphasic
8
biphasic seizures
8
seizures late
8
late reduced
8
reduced diffusion
8
differentiate aesd
8
seizures
5
diffusion predictive
4
predictive eeg
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!