Mass testing for the diagnostics of COVID-19 has been hampered in many countries owing to the high cost of the methodologies to detect genetic material of SARS-CoV-2. In this paper, we report on a low-cost immunosensor capable of detecting the spike protein of SARS-CoV-2, including in samples of inactivated virus. Detection is performed with electrical impedance spectroscopy using an immunosensor that contains a monolayer film of carboxymethyl chitosan as matrix, coated with an active layer of antibodies specific to the spike protein. In addition to a low limit of detection of 0.179 fg/mL within an almost linear behavior from 10 g/mL to 10 g/mL, the immunosensor was highly selective. For the samples with the spike protein could be distinguished in multidimensional projection plots from samples with other biomarkers and analytes that could be interfering species for healthy and infected patients. The excellent analytical performance of the immunosensors was validated with the distinction between control samples and those containing inactivated SARS-CoV-2 at different concentrations. The mechanism behind the immunosensor performance is the specific antibody-protein interaction, as confirmed with the changes induced in C-H stretching and protein bands in polarization-modulated infrared reflection absorption spectra (PM-IRRAS). Because impedance spectroscopy measurements can be made with low-cost portable instruments, the immunosensor proposed here can be applied in point-of-care diagnostics for mass testing even in places with limited resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8607795PMC
http://dx.doi.org/10.1016/j.talanta.2021.123076DOI Listing

Publication Analysis

Top Keywords

spike protein
16
impedance spectroscopy
12
electrical impedance
8
spectroscopy immunosensor
8
mass testing
8
samples inactivated
8
immunosensor
6
protein
5
diagnostics sars-cov-2
4
sars-cov-2 infection
4

Similar Publications

Overexpression of AtbZIP69 in transgenic wheat confers tolerance to nitrogen and drought stress.

Planta

January 2025

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.

AtbZIP69 overexpression in wheat significantly enhanced drought and low nitrogen tolerance by modulating ABA synthesis, antioxidant activity, nitrogen allocation, and transporter gene expression, boosting yield. In this study, we generated wheat plants with improved low nitrogen (LN) and drought tolerance by introducing AtbZIP69, a gene encoding a basic leucine zipper domain transcription factor, into the wheat cultivar Shi 4056. AtbZIP69 localized to the nucleus and activated transcription.

View Article and Find Full Text PDF

The COVID-19 pandemic posed a threat to global society. Delta and Omicron are concerning variants due to the risk of increasing human-to-human transmissibility and immune evasion. This study aims to evaluate the binding ability of these variants toward the angiotensin-converting enzyme 2 receptor and antibodies using a computational approach.

View Article and Find Full Text PDF

Background: Despite numerous genetic studies on Infectious Bronchitis Virus (IBV), many strains from the Middle East remain misclassified or unclassified. Genotype 1 (GI-1) is found globally, while genotype 23 (GI-23) has emerged as the predominant genotype in the Middle East region, evolving continuously through inter- and intra-genotypic recombination. The GI-23 genotype is now enzootic in Europe and Asia.

View Article and Find Full Text PDF

This study aimed to achieve two main objectives: first, to determine whether the virulence factors of symbiotic bacteria of entomopathogenic nematodes (EPNs) against insect hosts are cell-associated or secreted, and to shed light on the underlying mechanisms of pathogenicity; and second, to identify and evaluate the standalone pathogenicity of symbiotic bacteria associated with entomopathogenic nematodes against Tenebrio molitor. Three bacterial species, Xenorhabdus nematophila (A41, SC, A18 and SF), Photorhabdus kayaii, and P. thracensis, were isolated and characterized via phylogenetic analysis of 16S-rRNA and gyrB genes.

View Article and Find Full Text PDF

Improved ovalbumin accurate quantitative performance in processed foods by full-length isotope-labeled protein.

Food Chem

December 2024

National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China. Electronic address:

Ovalbumin (OVA) is a high-risk allergen with complex tertiary structure in food samples. Here, we developed an accurate UPLC-MS/MS-based assay to improve OVA quantitative performance in processed foods. Full-length isotope-labeled OVA proteins (OVA-I) were synthesized using stable isotope labeling by amino acids in cell culture (SILAC) technique and employed as functional internal standards to ensure similar cleavage sites between internal standards and analytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!