Hypothesis: Molecular interactions between 4-OH-cinnamate and cetrimonium in solution result in improved adsorption of the cinnamate on mild steel, developing a protective mechanism against the diffusion of corrosive chloride to the oxide surface. Fundamental understanding of this mechanism should allow new design routes for the development of eco-friendly corrosion inhibitors.

Experiments: Via classic molecular dynamics, simulations were carried out for cetrimonium and 4-OH-cinnamate in aqueous solutions at different ionic strengths and the results were validated with experimental SAXS data. Self-aggregation of cetrimonium 4-OH-cinnamate on a hydrated hematite surface was then simulated and results were compared with cryo-TEM imaging for the same compound. Finally, the effect of the adsorbed aggregates on chloride diffusion to the oxide surface was modelled.

Findings: Simulations showed the encapsulation of 4-OH-cinnamate into cetrimonium micelles, consistent with experiments. The newly formed micelles adsorb onto a hydrated iron oxide surface by forming hydrogen bonds between their carboxylate outer-shell groups and the surface hydroxyls. As the adsorbate concentrations increase, there is a morphological transition from spherical to wormlike adsorbed aggregates. The wormlike structure can block chloride ions, demonstrating a synergistic inhibitory mechanism between both cetrimonium and 4-OH-cinnamate. Encapsulation and delivery of active compounds to certain targets, such as carcinogenic tumors, have been well studied in biochemistry research, we demonstrate that the same mechanism can be applied to the design of efficient corrosion inhibitors, optimizing their delivery to the metal surface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.11.139DOI Listing

Publication Analysis

Top Keywords

oxide surface
16
cetrimonium 4-oh-cinnamate
12
cetrimonium micelles
8
hydrated iron
8
iron oxide
8
4-oh-cinnamate cetrimonium
8
adsorbed aggregates
8
surface
7
4-oh-cinnamate
5
cetrimonium
5

Similar Publications

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

Carbon-supported Fe single atom nanozymes with long-lasting ROS generation and high NIR photothermal performance for synergistic cancer therapy.

J Colloid Interface Sci

April 2025

High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.

View Article and Find Full Text PDF

An ultrasensitive ECL immunosensor with a dual signal amplification strategy using AuNPs@GO@SmMoSe and Gd(MoO) for estriol detection.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.

View Article and Find Full Text PDF

Nanocellulose/activated carbon composite aerogel beads with high adsorption capacity for toxins in blood.

Int J Biol Macromol

January 2025

School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China. Electronic address:

Activated carbon is extensively utilized in blood purification applications. However, its performance has been significantly limited by their poor blood compatibility. In this work, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOCN) and activated carbon (AC) were used to form composite beads by the drop curing method to improve hemocompatibility.

View Article and Find Full Text PDF

Photothermal/photodynamic synergistic antibacterial Nanocellulose film modified with antioxidant MXene-PANI Nanosheets.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

TEMPO-CNF film modified by two-dimension transition metal MXene has certain antibacterial properties. However, the problem of long-lasting stability greatly restricts the feasibility of long-term use of the composite film. Here, we introduced polyaniline (PANI) as a modifying molecule, which was electrostatically adsorbed on the surface of the MXene nanosheets to prevent its self-stacking and delay its oxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!