Background: Trials investigating the role of mesenchymal stem cells (MSCs) in increasing ejection fraction (LVEF) after acute myocardial infarction (AMI) have raised some controversies. This study was conducted to find whether transplantation of MSCs after AMI can help improve myocardial performance indices or clinical outcomes.

Methods: Randomized trials which evaluated transplantation of MSCs after AMI were enrolled. The primary outcome was LVEF change. We also assessed the role of cell origin, cell number, transplantation time interval after AMI, and route of cell delivery on the primary outcome.

Results: Thirteen trials including 956 patients (468 and 488 in the intervention and control arms) were enrolled. After excluding the biased data, LVEF was significantly increased compared to the baseline among those who received MSC (WMD = 3.78%, 95% CI: 2.14 to 5.42, p < 0.001, I = 90.2%) with more pronounced effect if the transplantation occurred within the first week after AMI (MD = 5.74%, 95%CI: 4.297 to 7.183; I = 79.2% p < 0.001). The efficacy of trans-endocardial injection was similar to that of intracoronary infusion (4% [95%CI: 2.741 to 5.259, p < 0.001] vs. 3.565% [95%CI: 1.912 to 5.218, p < 0.001], respectively). MSC doses of lower and higher than 10 cells did not improve LVEF differently (5.24% [95%CI: 2.06 to 8.82, p = 0.001] vs. 3.19% [95%CI: 0.17 to 6.12, p = 0.04], respectively).

Conclusion: Transplantation of MSCs after AMI significantly increases LVEF, showing a higher efficacy if done in the first week. Further clinical studies should be conducted to investigate long-term clinical outcomes such as heart failure and cardiovascular mortality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8650261PMC
http://dx.doi.org/10.1186/s13287-021-02667-1DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
8
acute myocardial
8
myocardial infarction
8
transplantation mscs
8
mscs ami
8
cell
4
stem cell
4
transplantation
4
cell transplantation
4
transplantation acute
4

Similar Publications

Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.

Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.

View Article and Find Full Text PDF

Exosomes, cell-derived vesicles produced by cells, are fascinating and drawing growing interest in the field of biomedical exploration due to their exceptional properties. There is fascinating evidence that exosomes are involved in major biological processes, including diseases and regeneration. Exosomes from mesenchymal stem cells (MSCs) have shown promising outcomes in regenerative medicine.

View Article and Find Full Text PDF

The mesenchymal stem cell (MSC) secretome plays a pivotal role in shaping the tumor microenvironment, influencing both cancer progression and potential therapeutic outcomes. In this research, by using publicly available dataset GSE196312, we investigated the role of MSC secretome on breast cancer cell gene expression. Our results raveled differentially expressed genes, including the upregulation of Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (PREX1), C-C Motif Chemokine Ligand 28 (CCL28), and downregulation of Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type I Alpha 3 Chain (COL1A3), Collagen Type III Alpha 1 Chain (COL3A1), which contributing to extra cellular matrix (ECM) weakening and promoting cell migration.

View Article and Find Full Text PDF

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Single-nucleus and spatial landscape of the sub-ventricular zone in human glioblastoma.

Cell Rep

January 2025

The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA. Electronic address:

The sub-ventricular zone (SVZ) is the most well-characterized neurogenic area in the mammalian brain. We previously showed that in 65% of patients with glioblastoma (GBM), the SVZ is a reservoir of cancer stem-like cells that contribute to treatment resistance and the emergence of recurrence. Here, we build a single-nucleus RNA-sequencing-based microenvironment landscape of the tumor mass and the SVZ of 15 patients and two histologically normal SVZ samples as controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!