Combination of CTLA-4 blockade with MUC1 mRNA nanovaccine induces enhanced anti-tumor CTL activity by modulating tumor microenvironment of triple negative breast cancer.

Transl Oncol

Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China. Electronic address:

Published: January 2022

The immunosuppressive tumor microenvironment (TME) is the main reason for the failure of many immunotherapies that directly stimulate anti-tumor immune response. Anti-CTLA-4 antibody may reduce effector regulatory T (Treg) cell numbers and their suppressive activity in the TME. We have previously reported that combination of anti-CTLA-4 antibody with MUC1 mRNA nanovaccine may mutually enhance each single treatment. But the enhancement mechanism of therapeutic efficacy of MUC1 mRNA nanovaccine plus anti-CTLA-4 monoclonal antibody (mAb) is unknown. In this study, anti-tumor CTL activity induced by combination of CTLA-4 Blockade with MUC1 mRNA nanovaccine and immunosuppressive factors in the TME of triple negative breast cancer were investigated. The results demonstrated that combined therapy with nanovaccine and anti-CTLA-4 mAb could induce stronger anti-tumor CTL response than each monotherapy, result in significantly decreased numbers of myeloid-derived suppressor cells (MDSC), Treg cells, tumor-associated fibroblasts (TAFs) and tumor vasculature in the TME, downregulated levels of interleukin-6, tumor necrosis factor-α and transforming growth factor-β, and significantly upregulated levels of IFN-γ and interleukin-12 as well as increased number of CD8 T cell, and appear more effective than either nanovaccine or anti-CTLA-4 mAb alone at increasing level of apoptosis in tumor cells. In addition, combination immunotherapy could significantly downregulated the signal transducer and activator of transcription 3 (STAT3) signal pathway. Therefore, it can be concluded that combination of CTLA-4 blockade with MUC1 mRNA nanovaccine enhances anti-tumor cytotoxic T-lymphocyte activity by reducing immunosuppressive TME and inhibiting tumor-promoting STAT3 signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652013PMC
http://dx.doi.org/10.1016/j.tranon.2021.101298DOI Listing

Publication Analysis

Top Keywords

muc1 mrna
20
mrna nanovaccine
20
combination ctla-4
12
ctla-4 blockade
12
blockade muc1
12
anti-tumor ctl
12
nanovaccine anti-ctla-4
12
ctl activity
8
tumor microenvironment
8
triple negative
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!