Learning how to reach a reward over long series of actions is a remarkable capability of humans, and potentially guided by multiple parallel learning modules. Current brain imaging of learning modules is limited by (i) simple experimental paradigms, (ii) entanglement of brain signals of different learning modules, and (iii) a limited number of computational models considered as candidates for explaining behavior. Here, we address these three limitations and (i) introduce a complex sequential decision making task with surprising events that allows us to (ii) dissociate correlates of reward prediction errors from those of surprise in functional magnetic resonance imaging (fMRI); and (iii) we test behavior against a large repertoire of model-free, model-based, and hybrid reinforcement learning algorithms, including a novel surprise-modulated actor-critic algorithm. Surprise, derived from an approximate Bayesian approach for learning the world-model, is extracted in our algorithm from a state prediction error. Surprise is then used to modulate the learning rate of a model-free actor, which itself learns via the reward prediction error from model-free value estimation by the critic. We find that action choices are well explained by pure model-free policy gradient, but reaction times and neural data are not. We identify signatures of both model-free and surprise-based learning signals in blood oxygen level dependent (BOLD) responses, supporting the existence of multiple parallel learning modules in the brain. Our results extend previous fMRI findings to a multi-step setting and emphasize the role of policy gradient and surprise signalling in human learning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2021.118780 | DOI Listing |
Sci Rep
January 2025
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China.
Land Surface Temperature (LST) is widely recognized as a sensitive indicator of climate change, and it plays a significant role in ecological research. The ERA5-Land LST dataset, developed and managed by the European Centre for Medium-Range Weather Forecasts (ECMWF), is extensively used for global or regional LST studies. However, its fine-scale application is limited by its low spatial resolution.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Ultrasound, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China.
While ultrasonography effectively diagnoses Hashimoto's thyroiditis (HT), exploring its transcriptomic landscape could reveal valuable insights into disease mechanisms. This study aimed to identify HT-associated RNA signatures and investigate their potential for enhanced molecular characterization. Samples comprising 31 HT patients and 30 healthy controls underwent RNA sequencing of peripheral blood.
View Article and Find Full Text PDFAcad Radiol
January 2025
Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China (B.Z., F.M., X.S., S.L., Q.W.); Department of Urology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong 510080, China (Q.W.). Electronic address:
Rationale And Objectives: To develop an automatic deep-radiomics framework that diagnoses and stratifies prostate cancer in patients with prostate-specific antigen (PSA) levels between 4 and 10 ng/mL.
Materials And Methods: A total of 1124 patients with histological results and PSA levels between 4 and 10 ng/mL were enrolled from one public dataset and two local institutions. An nnUNet was trained for prostate masks, and a feature extraction module identified suspicious lesion masks.
Comput Biol Med
January 2025
Division of Electronics and Information Engineering, College of Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, 54896, Jeonju, Republic of Korea. Electronic address:
Kidney stone is a common urological disease in dogs and can lead to serious complications such as pyelonephritis and kidney failure. However, manual diagnosis involves a lot of burdens on radiologists and may cause human errors due to fatigue. Automated methods using deep learning models have been explored to overcome this limitation.
View Article and Find Full Text PDFDue to the low contrast of abdominal CT (Computer Tomography) images and the similar color and shape of the liver to other organs such as the spleen, stomach, and kidneys, liver segmentation presents significant challenges. Additionally, 2D CT images obtained from different angles (such as sagittal, coronal, and transverse planes) increase the diversity of liver morphology and the complexity of segmentation. To address these issues, this paper proposes a Detail Enhanced Convolution (DE Conv) to improve liver feature learning and thereby enhance liver segmentation performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!