Alzheimer's disease (AD) is mainly characterized by amyloid beta (Aβ) plaque deposition and neurofibrillary tangle formation due to tau hyperphosphorylation. It has been shown that astrocytes respond to these pathologies very early and exert either beneficial or deleterious effects towards neurons. Here, we identified soluble intercellular adhesion molecule-1 (ICAM-1) which is rapidly increased in astrocyte conditioned medium derived from Aβ treated cultured astrocytes (Aβ-ACM). Aβ-ACM was found to be neuroprotective, however, Aβ-ACM deprived of ICAM-1 was unable to protect neurons against Aβ mediated toxicity. Moreover, exogenous ICAM-1 renders protection to neurons from Aβ induced death. It blocks Aβ-mediated PARP cleavage and increases the levels of anti-apoptotic proteins such as Bcl-2 and Bcl-xL, and decreases pro-apoptotic protein Bim. In an Aβ-infused rat model of AD and in 5xFAD mouse, intra-peritoneal administration of ICAM-1 revealed a reduction in Aβ load in hippocampal and cortical regions. Moreover, ICAM-1 treatment led to an increment in the expression of the Aβ-degrading enzyme, neprilysin in 5xFAD mice. Finally, we found that ICAM-1 can ameliorate cognitive deficits in Aβ-infused rat and 5xFAD mouse. Interestingly, ICAM-1 could block the NF-κB upregulation by Aβ and inhibition of NF-κB recovers cognitive impairments in 5xFAD mice. Thus, our study finds a neuroprotective role of ICAM-1 and suggests that it can be a major candidate in cytokine-mediated therapy of AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbi.2021.11.021 | DOI Listing |
Neuron
January 2025
Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China; Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen 518055, Guangdong, China. Electronic address:
PSEN1 E280A carrier for the APOE3 Christchurch variant (R136S) is protected against Alzheimer's disease (AD) symptoms with a distinct anatomical pattern of Tau pathology. However, the molecular mechanism accounting for this protective effect remains incompletely understood. Here, we show that the ApoE3 R136S mutant strongly binds to Tau and reduces its uptake into neurons and microglia compared with ApoE3 wild type (WT), diminishing Tau fragmentation by asparagine endopeptidase (AEP), proinflammatory cytokines by Tau pre-formed fibrils (PFFs) or β-amyloid (Aβ), and neurotoxicity.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Antiamyloid antibody treatments modestly slow disease progression in mild dementia due to AD. Emerging evidence shows that homeostatic dysregulation of the brain immune system, especially that orchestrated by microglia, plays an important role in disease onset and progression.
View Article and Find Full Text PDFAging Dis
January 2025
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog 1478, Norway.
Alzheimer's disease (AD) is marked by extracellular beta-amyloid (Aβ) plaques and intracellular Tau tangles, leading to progressive cognitive decline and neuronal dysfunction. Impaired autophagy, a process by which a cell breaks down and destroys damaged or abnormal proteins and other substances, contributes to AD progression. This study investigated Nuclear Receptor Subfamily 1 Group D Member 1 (NR1D1) as a potential therapeutic target for modulating autophagy.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Department of International Medical, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Lujiang Road 373, Hefei 230001, Anhui, China.
The dysregulation of T cell differentiation was associated with cognitive impairment. Recently, the peripheric β-secretase (BACE1) has been suggested as a regulator of T cell differentiation, which was increased in both cognitive impairment (CI) and type 2 diabetes mellitus (T2DM) in CI patients. However, the relationship between T cell dysfunction and CI remains unclear.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!