Color-producing chemicals emitted from many sources, such as textile or dye manufacturing industries, are a significant concern worldwide. The present study focuses on the electro-peroxone (EP) process for decolorizing a synthetic azo dye, C.I. Reactive Black 5 (RB5). Findings suggest that the EP process is more effective for dye degradation than ozonation and electrolysis. The EP process resulted in 100% decolorization after 60 min of contact time under optimum testing conditions such as pH 7, applied current 300 mA, and sulfate concentration 3.55 g L. Based on the findings of the primary investigation, EP treatment of real textile effluent was carried out and 2 h of EP treatment resulted in 99% decolorization and 74%total organic carbon (TOC) removal. As an outcome, the EP process can treat textile wastewater in a cost-effective and environmentally friendly manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.133152DOI Listing

Publication Analysis

Top Keywords

azo dye
8
textile wastewater
8
electro-peroxone process
8
process
5
effective degradation
4
degradation azo
4
dye
4
textile
4
dye textile
4
wastewater electro-peroxone
4

Similar Publications

Objective: To evaluate Chicago Sky Blue (CSB) stain, Calcofluor white (CW) stain, and Potassium Hydroxide (KOH) mount for rapid diagnosis of dermatomycosis, using fungal culture as the gold standard.

Study Design: Cross-sectional analytical study. Place and Duration of the Study: This study was conducted in the Department of Microbiology, Armed Forces Institute of Pathology / National University of Medical Sciences, Rawalpindi, Pakistan, from July 2023 to February 2024.

View Article and Find Full Text PDF

Unfolded protein response during the progression of colorectal carcinogenesis.

Acta Cir Bras

January 2025

Universidade Federal de Mato Grosso do Sul - Postgraduate Program in Health and Development in the Midwest Region - Campo Grande (MS) - Brazil.

Purpose: To evaluate the molecular evolution of endoplasmic reticulum (ER) stress during colorectal cancer carcinogenesis.

Methods: Fifty-six hairless mice were divided into two groups: control (no intervention); and carcinogenesis (treated with two doses of azoxymethane at 10 mg/kg during the third and the fourth week and dextran sodium sulfate at 2.5% for seven days in the second, fifth, and eighth week).

View Article and Find Full Text PDF

Photocatalytic degradation of the azo dye orange II using NdVO/VO/BiVO under visible light is reported here, and this oxygen-rich defect three-phase heterojunction structure is constructed using a two-step cation exchange method. This heterojunction significantly enhances the separation and migration efficiency of photo-induced charges, while the accompanying oxygen defects effectively capture photogenerated electrons, thereby suppressing the recombination of electrons and holes. Experimental characterization and theoretical calculations demonstrate the efficient separation and transfer capabilities of photogenerated carriers and their excellent photocatalytic degradation performance.

View Article and Find Full Text PDF

This study demonstrated a novel approach to accurately estimate 5-day biochemical oxygen demand (BOD) in textile wastewater using a microbial consortium from food processing wastewater fixed on coconut fibers. Although glucose-glutamic acid (GGA) has been widely known as the most preferred substrates for microbial respiration, its calibration surprisingly resulted in an overestimation of BOD in textile wastewater due to its lower utilization rate compared to that of textile wastewater. After being adapted with a new nutrient environment composed of GGA and textile wastewater, the adapted packed-bed bioreactors (PBBRs) was capable of accurate estimation of BOD in textile wastewater using GGA standard solution.

View Article and Find Full Text PDF

Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency.

BMC Microbiol

January 2025

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!